README_en.md 36.5 KB
Newer Older
W
wangguanzhong 已提交
1
[简体中文](README_cn.md) | English
2

3 4 5 6 7
<div align="center">
<p align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160532560-34cf7a1f-d950-435e-90d2-4b0a679e5119.png" align="middle" width = "800" />
</p>

8
**A High-Efficient Development Toolkit for Object Detection based on [PaddlePaddle](https://github.com/paddlepaddle/paddle)**
9

10 11 12 13 14 15
<p align="center">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleDetection?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleDetection/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleDetection?color=ccf"></a>
16
</p>
17 18
</div>

19 20
<div  align="center">
  <img src="docs/images/ppdet.gif" width="800"/>
21

22
</div>
W
wangguanzhong 已提交
23

24
## <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> Product Update
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
- 🔥 **2022.8.26:PaddleDetection releases[release/2.5 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5)**

  - 🗳 Model features:

    - Release [PP-YOLOE+](configs/ppyoloe): Increased accuracy by a maximum of 2.4% mAP to 54.9% mAP, 3.75 times faster model training convergence rate, and up to 2.3 times faster end-to-end inference speed; improved generalization for multiple downstream tasks
    - Release [PicoDet-NPU](configs/picodet) model which supports full quantization deployment of models; add [PicoDet](configs/picodet) layout analysis model
    - Release [PP-TinyPose Plus](./configs/keypoint/tiny_pose/). With 9.1% AP accuracy improvement in physical exercise, dance, and other scenarios, our PP-TinyPose Plus supports unconventional movements such as turning to one side, lying down, jumping, and high lifts

  - 🔮 Functions in different scenarios

    - Release the pedestrian analysis tool [PP-Human v2](./deploy/pipeline). It introduces four new behavior recognition: fighting, telephoning, smoking, and trespassing. The underlying algorithm performance is optimized, covering three core algorithm capabilities: detection, tracking, and attributes of pedestrians. Our model provides end-to-end development and model optimization strategies for beginners and supports online video streaming input.
    - First release [PP-Vehicle](./deploy/pipeline), which has four major functions: license plate recognition, vehicle attribute analysis (color, model), traffic flow statistics, and violation detection. It is compatible with input formats, including pictures, online video streaming, and video. And we also offer our users a comprehensive set of tutorials for customization.

  - 💡 Cutting-edge algorithms:

    - Covers [YOLO family](https://github.com/nemonameless/PaddleDetection_YOLOSeries) classic and latest models: YOLOv3, PP-YOLOE (a real-time high-precision object detection model developed by Baidu PaddlePaddle), and cutting-edge detection algorithms such as YOLOv4, YOLOv5, YOLOX, MT-YOLOv6, and YOLOv7
    - Newly add high precision detection model based on [ViT](configs/vitdet) backbone network, with a 55.7% mAP accuracy on COCO dataset; newly add multi-object tracking model [OC-SORT](configs/mot/ocsort); newly add [ConvNeXt](configs/convnext) backbone network.

  - 📋 Industrial applications: Newly add [Smart Fitness](https://aistudio.baidu.com/aistudio/projectdetail/4385813), [Fighting recognition](https://aistudio.baidu.com/aistudio/projectdetail/4086987?channelType=0&channel=0),[ and Visitor Analysis](https://aistudio.baidu.com/aistudio/projectdetail/4230123?channelType=0&channel=0).
45

46 47 48 49 50
- 2022.3.24:PaddleDetection released[release/2.4 version](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)  
  - Release high-performanace SOTA object detection model [PP-YOLOE](configs/ppyoloe). It integrates cloud and edge devices and provides S/M/L/X versions. In particular, Verson L has the accuracy as 51.4% on COCO test 2017 dataset, inference speed as 78.1 FPS on a single Test V100. It supports mixed precision training, 33% faster than PP-YOLOv2. Its full range of multi-sized models can meet different hardware arithmetic requirements, and adaptable to server, edge-device GPU and other AI accelerator cards on servers.
  - Release ultra-lightweight SOTA object detection model [PP-PicoDet Plus](configs/picodet) with 2% improvement in accuracy and 63% improvement in CPU inference speed. Add PicoDet-XS model with a 0.7M parameter, providing model sparsification and quantization functions for model acceleration. No specific post processing module is required for all the hardware, simplifying the deployment.  
  - Release the real-time pedestrian analysis tool [PP-Human](deploy/pphuman). It has four major functions: pedestrian tracking, visitor flow statistics, human attribute recognition and falling detection. For falling detection, it is optimized based on real-life data with accurate recognition of various types of falling posture. It can adapt to different environmental background, light and camera angle.
  - Add [YOLOX](configs/yolox) object detection model with nano/tiny/S/M/L/X. X version has the accuracy as 51.8% on COCO  Val2017 dataset.
51

52
- [More releases](https://github.com/PaddlePaddle/PaddleDetection/releases)
53

54
## <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> Brief Introduction
55

56
**PaddleDetection** is an end-to-end object detection development kit based on PaddlePaddle. Providing **over 30 model algorithm** and **over 250 pre-trained models**, it covers object detection, instance segmentation, keypoint detection, multi-object tracking. In particular, PaddleDetection offers **high- performance & light-weight** industrial SOTA models on **servers and mobile** devices, champion solution and cutting-edge algorithm. PaddleDetection provides various data augmentation methods, configurable network components, loss functions and other advanced optimization & deployment schemes. In addition to running through the whole process of data processing, model development, training, compression and deployment, PaddlePaddle also provides rich cases and tutorials to accelerate the industrial application of algorithm.
57

58 59
<div  align="center">
  <img src="https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif" width="800"/>
60 61 62
</div>


63

64
## <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> Features
65

66 67 68 69
- **Rich model library**: PaddleDetection provides over 250 pre-trained models including **object detection, instance segmentation, face recognition, multi-object tracking**. It covers a variety of **global competition champion** schemes.
- **Simple to use**: Modular design, decoupling each network component, easy for developers to build and try various detection models and optimization strategies, quick access to high-performance, customized algorithm.
- **Getting Through End to End**: PaddlePaddle gets through end to end from data augmentation, constructing models, training, compression, depolyment. It also supports multi-architecture, multi-device deployment for **cloud and edge** device.
- **High Performance**: Due to the high performance core, PaddlePaddle has clear advantages in training speed and memory occupation. It also supports FP16 training and multi-machine training.
70

71
<div  align="center">
72
  <img src="img width="484" alt="newstructure" src="https://user-images.githubusercontent.com/22989727/186703085-8740e135-d61f-41df-9a29-30273285baa7.png"" width="800"/>
73
</div
74

75
## <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> Exchanges
76

77
- If you have any question or suggestion, please give us your valuable input via [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)
78

79
  Welcome to join PaddleDetection user groups on QQ, WeChat (scan the QR code, add and reply "D" to the assistant)
80

81
  <div align="center">
82 83
  <img src="https://user-images.githubusercontent.com/22989727/183843004-baebf75f-af7c-4a7c-8130-1497b9a3ec7e.png"  width = "200" />  
  <img src="https://user-images.githubusercontent.com/34162360/177678712-4655747d-4290-4ad9-b7a1-4564a5418ac6.jpg"  width = "200" />  
84 85
  </div>

86
## <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> Kit Structure
87

K
Kaipeng Deng 已提交
88
<table align="center">
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Architectures</b>
      </td>
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Components</b>
      </td>
      <td>
        <b>Data Augmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
K
Kaipeng Deng 已提交
106
        <ul>
107
        <details><summary><b>Object Detection</b></summary>
108 109 110 111
          <ul>
            <li>Faster RCNN</li>
            <li>FPN</li>
            <li>Cascade-RCNN</li>
K
Kaipeng Deng 已提交
112
            <li>PSS-Det</li>
113
            <li>RetinaNet</li>
114
            <li>YOLOv3</li>  
K
Kaipeng Deng 已提交
115 116
            <li>PP-YOLOv1/v2</li>
            <li>PP-YOLO-Tiny</li>
F
Feng Ni 已提交
117
            <li>PP-YOLOE</li>
118
            <li>PP-YOLOE+</li>
F
Feng Ni 已提交
119
            <li>YOLOX</li>
120
            <li>SSD</li>
121
            <li>CenterNet</li>
122 123
            <li>FCOS</li>  
            <li>TTFNet</li>
124 125
            <li>TOOD</li>
            <li>GFL</li>
K
Kaipeng Deng 已提交
126 127 128 129 130
            <li>PP-PicoDet</li>
            <li>DETR</li>
            <li>Deformable DETR</li>
            <li>Swin Transformer</li>
            <li>Sparse RCNN</li>
131 132 133
         </ul></details>
        <details><summary><b>Instance Segmentation</b></summary>
         <ul>
K
Kaipeng Deng 已提交
134
            <li>Mask RCNN</li>
135
            <li>Cascade Mask RCNN</li>
K
Kaipeng Deng 已提交
136
            <li>SOLOv2</li>
137 138
        </ul></details>
        <details><summary><b>Face Detection</b></summary>
K
Kaipeng Deng 已提交
139
        <ul>
K
Kaipeng Deng 已提交
140
            <li>BlazeFace</li>
141 142
        </ul></details>
        <details><summary><b>Multi-Object-Tracking</b></summary>
K
Kaipeng Deng 已提交
143
        <ul>
K
Kaipeng Deng 已提交
144 145
            <li>JDE</li>
            <li>FairMOT</li>
F
Feng Ni 已提交
146
            <li>DeepSORT</li>
147
            <li>ByteTrack</li>
148
            <li>OC-SORT</li>
149 150
        </ul></details>
        <details><summary><b>KeyPoint-Detection</b></summary>
K
Kaipeng Deng 已提交
151
        <ul>
K
Kaipeng Deng 已提交
152 153
            <li>HRNet</li>
            <li>HigherHRNet</li>
154 155 156
            <li>Lite-HRNet</li>
            <li>PP-TinyPose</li>
        </ul></details>
K
Kaipeng Deng 已提交
157
      </ul>
158 159
      </td>
      <td>
160
        <details><summary><b>Details</b></summary>
161 162
        <ul>
          <li>ResNet(&vd)</li>
163 164
          <li>Res2Net(&vd)</li>
          <li>CSPResNet</li>
165 166 167
          <li>SENet</li>
          <li>Res2Net</li>
          <li>HRNet</li>
168
          <li>Lite-HRNet</li>
169 170 171
          <li>DarkNet</li>
          <li>CSPDarkNet</li>
          <li>MobileNetv1/v3</li>  
172
          <li>ShuffleNet</li>
173
          <li>GhostNet</li>
174 175 176 177 178 179
          <li>BlazeNet</li>
          <li>DLA</li>
          <li>HardNet</li>
          <li>LCNet</li>  
          <li>ESNet</li>  
          <li>Swin-Transformer</li>
180 181
          <li>ConvNeXt</li>
          <li>Vision Transformer</li>
182
        </ul></details>
183 184
      </td>
      <td>
185
        <details><summary><b>Common</b></summary>
186 187 188 189
          <ul>
            <li>Sync-BN</li>
            <li>Group Norm</li>
            <li>DCNv2</li>
190 191
            <li>EMA</li>
          </ul> </details>
192
        </ul>
193
        <details><summary><b>KeyPoint</b></summary>
K
Kaipeng Deng 已提交
194 195
          <ul>
            <li>DarkPose</li>
196
          </ul></details>
K
Kaipeng Deng 已提交
197
        </ul>
198
        <details><summary><b>FPN</b></summary>
199 200
          <ul>
            <li>BiFPN</li>
201 202 203
            <li>CSP-PAN</li>
            <li>Custom-PAN</li>
            <li>ES-PAN</li>
204
            <li>HRFPN</li>
205
          </ul> </details>
206
        </ul>  
207
        <details><summary><b>Loss</b></summary>
208 209 210 211
          <ul>
            <li>Smooth-L1</li>
            <li>GIoU/DIoU/CIoU</li>  
            <li>IoUAware</li>
212 213 214 215
            <li>Focal Loss</li>
            <li>CT Focal Loss</li>
            <li>VariFocal Loss</li>
          </ul> </details>
216
        </ul>  
217
        <details><summary><b>Post-processing</b></summary>
218 219 220
          <ul>
            <li>SoftNMS</li>
            <li>MatrixNMS</li>  
221
          </ul> </details>  
222
        </ul>
223
        <details><summary><b>Speed</b></summary>
224 225 226
          <ul>
            <li>FP16 training</li>
            <li>Multi-machine training </li>  
227
          </ul> </details>  
228 229 230
        </ul>  
      </td>
      <td>
231
        <details><summary><b>Details</b></summary>
232 233
        <ul>
          <li>Resize</li>  
K
Kaipeng Deng 已提交
234
          <li>Lighting</li>  
235 236 237 238 239 240
          <li>Flipping</li>  
          <li>Expand</li>
          <li>Crop</li>
          <li>Color Distort</li>  
          <li>Random Erasing</li>  
          <li>Mixup </li>
F
Feng Ni 已提交
241
          <li>AugmentHSV</li>
242
          <li>Mosaic</li>
243 244 245
          <li>Cutmix </li>
          <li>Grid Mask</li>
          <li>Auto Augment</li>  
K
Kaipeng Deng 已提交
246
          <li>Random Perspective</li>  
247
        </ul> </details>  
248 249 250 251 252 253 254 255
      </td>  
    </tr>

</td>
    </tr>
  </tbody>
</table>

256
## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Model Performance
K
Kaipeng Deng 已提交
257

258 259 260 261
<details>
<summary><b> Performance comparison of Cloud models</b></summary>

The comparison between COCO mAP and FPS on Tesla V100 of representative models of each architectures and backbones.
262 263 264

<div align="center">
  <img src="docs/images/fps_map.png" />
265
</div>
266

267
**Clarification:**
268

269
- `ViT` stands for `ViT-Cascade-Faster-RCNN`, which has highest mAP on COCO as 55.7%
270
- `Cascade-Faster-RCNN`stands for `Cascade-Faster-RCNN-ResNet50vd-DCN`, which has been optimized to 20 FPS inference speed when COCO mAP as 47.8% in PaddleDetection models
271 272
- `PP-YOLOE` are optimized `PP-YOLO v2`. It reached accuracy as 51.4% on COCO dataset, inference speed as 78.1 FPS on Tesla V100
- `PP-YOLOE+` are optimized `PP-YOLOE`. It reached accuracy as 53.3% on COCO dataset, inference speed as 78.1 FPS on Tesla V100
273
- The models in the figure are available in the[ model library](#模型库)
274

275
</details>
276

277 278
<details>
<summary><b> Performance omparison on mobiles</b></summary>
279

280
The comparison between COCO mAP and FPS on Qualcomm Snapdragon 865 processor of models on mobile devices.
K
Kaipeng Deng 已提交
281 282

<div align="center">
283
  <img src="docs/images/mobile_fps_map.png" width=600/>
K
Kaipeng Deng 已提交
284 285
</div>

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
**Clarification:**

- Tests were conducted on Qualcomm Snapdragon 865 (4 \*A77 + 4 \*A55) batch_size=1, 4 thread, and NCNN inference library, test script see [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
- [PP-PicoDet](configs/picodet) and [PP-YOLO-Tiny](configs/ppyolo) are self-developed models of PaddleDetection, and other models are not tested yet.

</details>

## <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> Model libraries

<details>
<summary><b> 1. General detection</b></summary>

#### PP-YOLOE series Recommended scenarios: Cloud GPU such as Nvidia V100, T4 and edge devices such as Jetson series

| Model      | COCO Accuracy(mAP) | V100 TensorRT FP16 Speed(FPS) | Configuration                                           | Download                                                                                 |
|:---------- |:------------------:|:-----------------------------:|:-------------------------------------------------------:|:----------------------------------------------------------------------------------------:|
302 303 304 305
| PP-YOLOE+_s | 43.9        | 333.3                     | [link](configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml)     | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams)      |
| PP-YOLOE+_m | 50.0        | 208.3                     | [link](configs/ppyoloe/ppyoloe_plus_crn_m_80e_coco.yml)     | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_m_80e_coco.pdparams)     |
| PP-YOLOE+_l | 53.3        | 149.2                     | [link](configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml) | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_m_80e_coco.pdparams) |
| PP-YOLOE+_x | 54.9        | 95.2                      | [link](configs/ppyoloe/ppyoloe_plus_crn_x_80e_coco.yml) | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams) |
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

#### PP-PicoDet series Recommended scenarios: Mobile chips and x86 CPU devices, such as ARM CPU(RK3399, Raspberry Pi) and NPU(BITMAIN)

| Model      | COCO Accuracy(mAP) | Snapdragon 865 four-thread speed (ms) | Configuration                                         | Download                                                                              |
|:---------- |:------------------:|:-------------------------------------:|:-----------------------------------------------------:|:-------------------------------------------------------------------------------------:|
| PicoDet-XS | 23.5               | 7.81                                  | [Link](configs/picodet/picodet_xs_320_coco_lcnet.yml) | [Download](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) |
| PicoDet-S  | 29.1               | 9.56                                  | [Link](configs/picodet/picodet_s_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams)  |
| PicoDet-M  | 34.4               | 17.68                                 | [Link](configs/picodet/picodet_m_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams)  |
| PicoDet-L  | 36.1               | 25.21                                 | [Link](configs/picodet/picodet_l_320_coco_lcnet.yml)  | [Download](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams)  |

#### Frontier detection algorithm

| Model    | COCO Accuracy(mAP) | V100 TensorRT FP16 speed(FPS) | Configuration                                                                                                  | Download                                                                       |
|:-------- |:------------------:|:-----------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------:|
| YOLOX-l  | 50.1               | 107.5                         | [Link](configs/yolox/yolox_l_300e_coco.yml)                                                                    | [Download](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams)  |
| YOLOv5-l | 48.6               | 136.0                         | [Link](https://github.com/nemonameless/PaddleDetection_YOLOv5/blob/main/configs/yolov5/yolov5_l_300e_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) |

#### Other general purpose models [doc](docs/MODEL_ZOO_cn.md)

</details>

<details>
<summary><b> 2. Instance segmentation</b></summary>

| Model             | Introduction                                             | Recommended Scenarios                         | COCO Accuracy(mAP)               | Configuration                                                           | Download                                                                                              |
|:----------------- |:-------------------------------------------------------- |:--------------------------------------------- |:--------------------------------:|:-----------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|
| Mask RCNN         | Two-stage instance segmentation algorithm                | <div style="width: 50pt">Edge-Cloud end</div> | box AP: 41.4 <br/> mask AP: 37.5 | [Link](configs/mask_rcnn/mask_rcnn_r50_vd_fpn_2x_coco.yml)              | [Download](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams)              |
| Cascade Mask RCNN | Two-stage instance segmentation algorithm                | <div style="width: 50pt">Edge-Cloud end</div> | box AP: 45.7 <br/> mask AP: 39.7 | [Link](configs/mask_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) | [Download](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) |
| SOLOv2            | Lightweight single-stage instance segmentation algorithm | <div style="width: 50pt">Edge-Cloud end</div> | mask AP: 38.0                    | [Link](configs/solov2/solov2_r50_fpn_3x_coco.yml)                       | [Download](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_3x_coco.pdparams)                    |

</details>

<details>
<summary><b> 3. Keypoint detection</b></summary>

| Model                | Introduction                                                                                  | Recommended scenarios                         | COCO Accuracy(AP) | Speed                             | Configuration                                             | Download                                                                                    |
|:-------------------- |:--------------------------------------------------------------------------------------------- |:--------------------------------------------- |:-----------------:|:---------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|
| HRNet-w32 + DarkPose | <div style="width: 130pt">Top-down Keypoint detection algorithm<br/>Input size: 384x288</div> | <div style="width: 50pt">Edge-Cloud end</div> | 78.3              | T4 TensorRT FP16 2.96ms           | [Link](configs/keypoint/hrnet/dark_hrnet_w32_384x288.yml) | [Download](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) |
| HRNet-w32 + DarkPose | Top-down Keypoint detection algorithm<br/>Input size: 256x192                                 | Edge-Cloud end                                | 78.0              | T4 TensorRT FP16 1.75ms           | [Link](configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml) | [Download](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) |
| PP-TinyPose          | Light-weight keypoint algorithm<br/>Input size: 256x192                                       | Mobile                                        | 68.8              | Snapdragon 865 four-thread 6.30ms | [Link](configs/keypoint/tiny_pose/tinypose_256x192.yml)   | [Download](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams)    |
| PP-TinyPose          | Light-weight keypoint algorithm<br/>Input size: 128x96                                        | Mobile                                        | 58.1              | Snapdragon 865 four-thread 2.37ms | [Link](configs/keypoint/tiny_pose/tinypose_128x96.yml)    | [Download](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)     |

#### Other keypoint detection models [doc](configs/keypoint)

</details>

<details>
<summary><b> 4. Multi-object tracking PP-Tracking</b></summary>

| Model     | Introduction                                                  | Recommended scenarios | Accuracy               | Configuration                                                           | Download                                                                                              |
|:--------- |:------------------------------------------------------------- |:--------------------- |:----------------------:|:-----------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|
| DeepSORT  | SDE Multi-object tracking algorithm, independent ReID models  | Edge-Cloud end        | MOT-17 half val:  66.9 | [Link](configs/mot/deepsort/deepsort_jde_yolov3_pcb_pyramid.yml)        | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pcb_pyramid_r101.pdparams)    |
| ByteTrack | SDE Multi-object tracking algorithm with detection model only | Edge-Cloud end        | MOT-17 half val:  77.3 | [Link](configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml) | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/yolox_x_24e_800x1440_mix_det.pdparams) |
| JDE       | JDE multi-object tracking algorithm multi-task learning       | Edge-Cloud end        | MOT-16 test: 64.6      | [Link](configs/mot/jde/jde_darknet53_30e_1088x608.yml)                  | [Download](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams)            |
| FairMOT   | JDE multi-object tracking algorithm multi-task learning       | Edge-Cloud end        | MOT-16 test: 75.0      | [Link](configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml)              | [Download](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams)            |
361
| OC-SORT   | SDE multi-object tracking algorithm with detection model only       | Edge-Cloud end        | MOT-16 half val: 75.5      | [Link](configs/mot/ocsort/ocsort_yolox.yml)              | -            |
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

#### Other multi-object tracking models [docs](configs/mot)

</details>

<details>
<summary><b> 5. Industrial real-time pedestrain analysis tool-PP Human</b></summary>

| Function \ Model                     | Obejct detection                                                                       | Multi- object tracking                                                                 | Attribute recognition                                                                     | Keypoint detection                                                                        | Action recognition                                                | ReID                                                                   |
|:------------------------------------ |:-------------------------------------------------------------------------------------- |:-------------------------------------------------------------------------------------- |:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------:|:----------------------------------------------------------------------:|
| Pedestrian Detection                 | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                        |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Pedestrian Tracking                  |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Attribute Recognition (Image)        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) |                                                                                           |                                                                   |                                                                        |
| Attribute Recognition (Video)        |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   |                                                                        |
| Falling Detection                    |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |                                                                        |
| ReID                                 |                                                                                        | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |                                                                                           |                                                                                           |                                                                   | [](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) |
| **Accuracy**                         | mAP 56.3                                                                               | MOTA 72.0                                                                              | mA 94.86                                                                                  | AP 87.1                                                                                   | AP 96.43                                                          | mAP 98.8                                                               |
| **T4 TensorRT FP16 Inference speed** | 28.0ms                                                                                 | 33.1ms                                                                                 | Single person 2ms                                                                         | Single person 2.9ms                                                                       | Single person 2.7ms                                               | Single person 1.5ms                                                    |

</details>

**Click “ ✅ ” to download**

## <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/>Document tutorials

### Introductory tutorials

- [Installation](docs/tutorials/INSTALL_cn.md)
- [Quick start](docs/tutorials/QUICK_STARTED_cn.md)
- [Data preparation](docs/tutorials/data/README.md)
- [Geting Started on PaddleDetection](docs/tutorials/GETTING_STARTED_cn.md)
- [Customize data training]((docs/tutorials/CustomizeDataTraining.md)
- [FAQ]((docs/tutorials/FAQ)

### Advanced tutorials

- Configuration

  - [RCNN Configuration](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md)
  - [PP-YOLO Configuration](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md)

- Compression based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)

  - [Pruning/Quantization/Distillation Tutorial](configs/slim)

- [Inference deployment](deploy/README.md)

  - [Export model for inference](deploy/EXPORT_MODEL.md)

  - [Paddle Inference deployment](deploy/README.md)

    - [Inference deployment with Python](deploy/python)
    - [Inference deployment with C++](deploy/cpp)

  - [Paddle-Lite deployment](deploy/lite)

  - [Paddle Serving deployment](deploy/serving)

  - [ONNX model export](deploy/EXPORT_ONNX_MODEL.md)

  - [Inference benchmark](deploy/BENCHMARK_INFER.md)

- Advanced development

  - [Data processing module](docs/advanced_tutorials/READER.md)
  - [New object detection models](docs/advanced_tutorials/MODEL_TECHNICAL.md)
  - Custumization
    - [Object detection](docs/advanced_tutorials/customization/detection.md)
    - [Keypoint detection](docs/advanced_tutorials/customization/keypoint_detection.md)
Z
zhiboniu 已提交
431 432 433
    - [Multiple object tracking](docs/advanced_tutorials/customization/pphuman_mot.md)
    - [Action recognition](docs/advanced_tutorials/customization/pphuman_action.md)
    - [Attribute recognition](docs/advanced_tutorials/customization/pphuman_attribute.md)
434 435 436 437 438 439 440 441 442

### Courses

- **[Theoretical foundation] [Object detection 7-day camp](https://aistudio.baidu.com/aistudio/education/group/info/1617):** Overview of object detection tasks, details of RCNN series object detection algorithm and YOLO series object detection algorithm, PP-YOLO optimization strategy and case sharing, introduction and practice of AnchorFree series algorithm

- **[Industrial application] [AI Fast Track industrial object detection technology and application](https://aistudio.baidu.com/aistudio/education/group/info/23670):** Super object detection algorithms, real-time pedestrian analysis system PP-Human, breakdown and practice of object detection industrial application

- **[Industrial features] 2022.3.26** **[Smart City Industry Seven-Day Class](https://aistudio.baidu.com/aistudio/education/group/info/25620)** : Urban planning, Urban governance, Smart governance service, Traffic management, community governance.

443
### [Industrial tutorial examples](./industrial_tutorial/README.md)
444

445 446
- [Intelligent fitness recognition based on PP-TinyPose Plus](https://aistudio.baidu.com/aistudio/projectdetail/4385813)

447 448 449 450 451 452
- [Road litter detection based on PP-PicoDet Plus](https://aistudio.baidu.com/aistudio/projectdetail/3561097)

- [Communication tower detection based on PP-PicoDet and deployment on Android](https://aistudio.baidu.com/aistudio/projectdetail/3561097)

- [Visitor flow statistics based on FairMOT](https://aistudio.baidu.com/aistudio/projectdetail/2421822)

453
- [More examples](./industrial_tutorial/README.md)
454

455
## <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> Applications
456

457 458 459 460 461 462 463 464 465 466
- [Fitness app on android mobile](https://github.com/zhiboniu/pose_demo_android)
- [PP-Tracking GUI Visualization Interface](https://github.com/yangyudong2020/PP-Tracking_GUi)

## Recommended third-party tutorials

- [Deployment of PaddleDetection for Windows I ](https://zhuanlan.zhihu.com/p/268657833)
- [Deployment of PaddleDetection for Windows II](https://zhuanlan.zhihu.com/p/280206376)
- [Deployment of PaddleDetection on Jestson Nano](https://zhuanlan.zhihu.com/p/319371293)
- [How to deploy YOLOv3 model on Raspberry Pi for Helmet detection](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md)
- [Use SSD-MobileNetv1 for a project -- From dataset to deployment on Raspberry Pi](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/ssd_mobilenet_v1_for_raspi.md)
467

468
## <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> Version updates
469

470
Please refer to the[ Release note ](https://github.com/PaddlePaddle/Paddle/wiki/PaddlePaddle-2.3.0-Release-Note-EN)for more details about the updates
471

472
## <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20">  License
473

474
PaddlePaddle is provided under the [Apache 2.0 license](LICENSE)
475

476
## <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> Contribute your code
477

478
We appreciate your contributions and your feedback!
479

480 481 482 483 484 485
- Thank [Mandroide](https://github.com/Mandroide) for code cleanup and
- Thank [FL77N](https://github.com/FL77N/) for `Sparse-RCNN`model
- Thank [Chen-Song](https://github.com/Chen-Song) for `Swin Faster-RCNN`model
- Thank [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for developing PP-Tracking GUI interface
- Thank Shigure19 for developing PP-TinyPose fitness APP
- Thank [manangoel99](https://github.com/manangoel99) for Wandb visualization methods
486

487
## <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> Quote
488 489 490 491 492 493 494 495 496

```
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```