NeuralNetwork.cpp 16.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Util.h"

17 18 19
#include "NeuralNetwork.h"
#include "hl_gpu.h"
#include "paddle/gserver/layers/AgentLayer.h"
Z
zhangjinchao01 已提交
20
#include "paddle/utils/CustomStackTrace.h"
Y
Yu Yang 已提交
21
#include "paddle/utils/Logging.h"
22
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
23

T
tensor-tang 已提交
24 25 26 27
#ifdef PADDLE_USE_MKLDNN
#include "paddle/gserver/layers/MKLDNNLayer.h"
#endif

28
#ifndef PADDLE_MOBILE_INFERENCE
Y
Yu Yang 已提交
29
#include "MultiNetwork.h"
Z
zhangjinchao01 已提交
30
#include "RecurrentGradientMachine.h"
31
#endif
Z
zhangjinchao01 已提交
32 33

namespace paddle {
34 35
void parameterInitNN(int paramId,
                     Parameter* para,
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43
                     std::vector<ParameterPtr>* sharedParams) {
  // Create parameters values.
  if (!para->useGpu() && sharedParams) {
    para->enableSharedType(PARAMETER_VALUE,
                           (*sharedParams)[paramId]->getBuf(PARAMETER_VALUE),
                           (*sharedParams)[paramId]->getMat(PARAMETER_VALUE));
  } else {
    if (para->isSparseRemoteUpdate()) {
44 45 46 47
      para->enableType(PARAMETER_VALUE,
                       FLAGS_loadsave_parameters_in_pserver
                           ? Parameter::MAT_SPARSE_ROW_PREFETCH
                           : Parameter::MAT_SPARSE_ROW_PREFETCH_FULL_SIZE);
Z
zhangjinchao01 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    } else {
      para->enableType(PARAMETER_VALUE);
    }
  }
  // Create parameter gradients.
  if (para->isSparseRemoteUpdate() && !sharedParams) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW);
  } else if (para->isGradSparseUpdate()) {
    para->enableType(PARAMETER_GRADIENT, Parameter::MAT_SPARSE_ROW_AUTO_GROW);
  } else if (!para->isStatic()) {
    para->enableType(PARAMETER_GRADIENT);
  }
}

NeuralNetwork* NeuralNetwork::create(const ModelConfig& config) {
63
#ifndef PADDLE_MOBILE_INFERENCE
Z
zhangjinchao01 已提交
64 65 66 67 68 69 70
  if (config.type() == "recurrent_nn") {
    return newNeuralNetwork("root");
  } else if (config.type() == "multi_nn") {
    return new MultiNetwork("root");
  } else {
    return newNeuralNetwork();
  }
71 72 73
#else
  return new NeuralNetwork();
#endif
Z
zhangjinchao01 已提交
74 75 76 77
}

std::map<std::string, bool> NeuralNetwork::dllInitMap;

78 79
void NeuralNetwork::init(const ModelConfig& config,
                         ParamInitCallback callback,
Z
zhangjinchao01 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                         const std::vector<ParameterType>& parameterTypes,
                         bool useGpu) {
  using std::placeholders::_1;
  using std::placeholders::_2;
  ParamInitCallback paramCallback = nullptr;
  if (callback != nullptr) {
    paramSelfInited_ = false;
    paramCallback = callback;
  } else {
    paramSelfInited_ = true;
    paramCallback = std::bind(parameterInitNN, _1, _2, nullptr);
  }
  config_ = config;

  if (rootNetwork_ != nullptr) {
    // direct use parameters_ and parameterMap_ from base network
    CHECK_EQ((size_t)config.parameters_size(),
             rootNetwork_->getParameters().size());
    parameters_ = rootNetwork_->getParameters();
    parameterMap_ = *(rootNetwork_->getParameterMap());
  } else {
    parameters_.reserve(config.parameters_size());
    for (const auto& para_config : config.parameters()) {
103 104
      auto parameter = std::make_shared<Parameter>(para_config,
                                                   useGpu,
Z
zhangjinchao01 已提交
105 106 107 108
                                                   /*initialize=*/false);
      paramCallback(parameters_.size(), parameter.get());
      if (!callback) {
        for (ParameterType type :
109
             (parameter->isStatic()
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                  ? std::vector<ParameterType>{PARAMETER_VALUE}
                  : parameterTypes)) {
          if (type != PARAMETER_VALUE && type != PARAMETER_GRADIENT) {
            parameter->enableType(type);
          }
        }
      }
      parameter->setID(parameters_.size());
      parameters_.push_back(parameter);
      CHECK(!parameterMap_.count(parameter->getName()));
      parameterMap_[parameter->getName()] = parameter;
    }
  }

  auto layerCreate = [&](const LayerConfig& layer_config) {
    auto layer = Layer::create(layer_config);
    CHECK(layer) << "Create layer failed. Layer name:" << layer->getName();
    layers_.push_back(layer);
    CHECK(!layerMap_.count(layer->getName()));
    layerMap_[layer->getName()] = layer;
  };

132 133 134 135 136
  auto subModelConfig = std::find_if(config.sub_models().begin(),
                                     config.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
137 138 139 140 141 142
  bool useSubModel = (subModelConfig != config.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    layers_.reserve(subModelConfig->layer_names_size());
    for (const auto& layer_name : subModelConfig->layer_names()) {
      auto layer_config =
143 144
          std::find_if(config.layers().begin(),
                       config.layers().end(),
Z
zhangjinchao01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                       [=](const LayerConfig& layer_config) {
                         return layer_config.name() == layer_name;
                       });
      CHECK(layer_config != config.layers().end());
      layerCreate(*layer_config);
    }
  } else {
    layers_.reserve(config.layers_size());
    for (const auto& layer_config : config.layers()) {
      bool useLayer = true;
      if (config.has_external_config()) {
        useLayer = true;
        for (const auto& name : config.external_config().layer_names()) {
          if (layer_config.name() == name) {
            useLayer = false;
            break;
          }
        }
      }
      if (useLayer) {
        layerCreate(layer_config);
      }
    }
  }

  for (const auto& layer : layers_) {
    layer->init(layerMap_, parameterMap_);
    layer->initSubNetwork(this /*root*/, config_, parameterTypes, useGpu);
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->input_layer_names()
                    : config.input_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    dataLayers_.push_back(std::dynamic_pointer_cast<DataLayer>(it->second));
  }

  for (const auto& layer_name :
       (useSubModel ? subModelConfig->output_layer_names()
                    : config.output_layer_names())) {
    auto it = layerMap_.find(layer_name);
    CHECK(it != layerMap_.end());
    outputLayers_.push_back(it->second);
  }
}

192 193
void NeuralNetwork::connect(LayerPtr agentLayer,
                            LayerPtr realLayer,
Z
zhangjinchao01 已提交
194 195 196 197 198 199
                            int height) {
  AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get());
  CHECK_NOTNULL(agent);
  agent->setRealLayer(realLayer, height);
}

200 201
void NeuralNetwork::connect(std::string agentLayerName,
                            NeuralNetwork* srcNN,
Z
zhangjinchao01 已提交
202 203 204 205 206 207 208 209 210 211 212
                            std::string realLayerName) {
  connect(this->getLayer(agentLayerName), srcNN->getLayer(realLayerName));
}

void NeuralNetwork::prefetch(const std::vector<Argument>& inArgs) {
  CHECK_EQ(inArgs.size(), dataLayers_.size());

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
213
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
214
        para->clearGradient();
武毅 已提交
215
        if (mat) mat->clearIndices();
Z
zhangjinchao01 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
      }
    }
  }

  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    if (FLAGS_parallel_nn) {
      const_cast<Argument&>(inArgs[i]).deviceId = -1;
    }
    dataLayers_[i]->setData(inArgs[i]);
  }

  for (auto& layer : layers_) {
    layer->prefetch();
  }

  if (paramSelfInited_) {
    for (auto& para : parameters_) {
      if (para->isSparseRemoteUpdate()) {
        auto mat = dynamic_cast<SparsePrefetchRowCpuMatrix*>(
235
            para->getMat(PARAMETER_VALUE).get());
Z
zhangjinchao01 已提交
236 237
        mat->setupIndices();
        auto matGrad = dynamic_cast<SparseRowCpuMatrix*>(
238
            para->getMat(PARAMETER_GRADIENT).get());
Z
zhangjinchao01 已提交
239 240 241 242 243 244 245
        matGrad->reserveStore();
      }
    }
  }
}

void NeuralNetwork::forward(const std::vector<Argument>& inArgs,
246 247
                            std::vector<Argument>* outArgs,
                            PassType passType) {
Z
zhangjinchao01 已提交
248 249 250 251 252 253
  CHECK_EQ(inArgs.size(), dataLayers_.size());
  outArgs->resize(outputLayers_.size());
  for (size_t i = 0; i != dataLayers_.size(); ++i) {
    dataLayers_[i]->setData(inArgs[i]);
  }

X
xuwei06 已提交
254 255
  gLayerStackTrace.set_stage(true);

Z
zhangjinchao01 已提交
256 257 258 259 260
  {
    for (auto& layer : layers_) {
      REGISTER_TIMER_INFO("ForwardTimer", layer->getName().c_str());
      gLayerStackTrace.push(layer->getName());
      layer->forward(passType);
X
xuwei06 已提交
261
      gLayerStackTrace.pop(layer->getName());
Z
zhangjinchao01 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    }
  }

  outArgs->clear();
  outArgs->reserve(outputLayers_.size());
  for (auto& layer : outputLayers_) {
    outArgs->push_back(layer->getOutput());
  }
}

void NeuralNetwork::resetState() {
  for (auto& layer : layers_) {
    layer->resetState();
  }
}

void NeuralNetwork::setState(const MachineState& machineState) {
  for (size_t i = 0; i < layers_.size(); i++) {
    if (machineState[i] != nullptr) {
      layers_[i]->setState(machineState[i]);
    }
  }
}

void NeuralNetwork::getState(MachineState& machineState) {
  machineState.clear();
  machineState.reserve(layers_.size());
  for (auto& layer : layers_) {
    LayerStatePtr p = layer->getState();
    machineState.push_back(p);
  }
}

void NeuralNetwork::backward(const UpdateCallback& callback) {
X
xuwei06 已提交
296
  gLayerStackTrace.set_stage(false);
Z
zhangjinchao01 已提交
297 298
  FOR_EACH_R(layer, layers_) {
    REGISTER_TIMER_INFO("BackwardTimer", (*layer)->getName().c_str());
X
xuwei06 已提交
299
    gLayerStackTrace.push((*layer)->getName());
Z
zhangjinchao01 已提交
300 301 302 303 304 305 306
    if ((*layer)->needGradient()) {
      (*layer)->backward(callback);
    }
    gLayerStackTrace.pop((*layer)->getName());
  }
}

T
tensor-tang 已提交
307 308 309 310 311 312 313 314 315 316 317
void NeuralNetwork::finish() {
#ifdef PADDLE_USE_MKLDNN
  FOR_EACH_R(layer, layers_) {
    MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(*layer);
    if (dnnLayer) {
      dnnLayer->convertWeightsToPaddle();
    }
  }
#endif
}

L
liaogang 已提交
318
Argument NeuralNetwork::getLayerOutput(const std::string& layerName) {
L
liaogang 已提交
319
  return getLayer(layerName)->getOutput();
Z
zhangjinchao01 已提交
320
}
321

Z
zhangjinchao01 已提交
322 323 324 325 326 327
void NeuralNetwork::onPassEnd() {
  for (auto& layer : layers_) {
    layer->onPassEnd();
  }
}

328 329
#ifndef PADDLE_MOBILE_INFERENCE

Z
zhangjinchao01 已提交
330 331 332 333 334
class CombinedEvaluator : public Evaluator {
public:
  void addEvaluator(std::unique_ptr<Evaluator>&& evaluator) {
    evaluators_.emplace_back(std::move(evaluator));
  }
Y
Yu Yang 已提交
335
  void start() override {
Z
zhangjinchao01 已提交
336 337 338 339 340
    for (auto& evaluator : evaluators_) {
      evaluator->start();
    }
  }

Y
Yu Yang 已提交
341
  void finish() override {
Z
zhangjinchao01 已提交
342 343 344 345 346
    for (auto& evaluator : evaluators_) {
      evaluator->finish();
    }
  }

Y
Yu Yang 已提交
347
  void eval(const NeuralNetwork& nn) override {
Z
zhangjinchao01 已提交
348 349 350 351
    for (auto& evaluator : evaluators_) {
      evaluator->eval(nn);
    }
  }
Y
Yu Yang 已提交
352
  real evalImp(std::vector<Argument>& arguments) override {
Z
zhangjinchao01 已提交
353 354 355
    (void)arguments;
    return -1;
  }
Y
Yu Yang 已提交
356
  void printStats(std::ostream& os) const override {
Z
zhangjinchao01 已提交
357 358 359 360 361 362
    for (auto& evaluator : evaluators_) {
      evaluator->printStats(os);
      os << ' ';
    }
  }

Y
Yu Yang 已提交
363
  void distributeEval(ParameterClient2* client) override {
Z
zhangjinchao01 已提交
364 365 366 367 368 369 370
    for (auto& evaluator : evaluators_) {
      evaluator->distributeEval(client);
    }
  }

protected:
  std::vector<std::unique_ptr<Evaluator>> evaluators_;
Y
Yu Yang 已提交
371 372 373

  // Evaluator interface
public:
Y
Yu Yang 已提交
374 375 376 377
  /**
   * @brief getNames will return all inside evaluators' names.
   * @param names [out]: return names.
   */
Y
Yu Yang 已提交
378
  void getNames(std::vector<std::string>* names) override {
Y
Yu Yang 已提交
379 380 381 382 383
    for (auto& eval : evaluators_) {
      eval->getNames(names);
    }
  }

Y
Yu Yang 已提交
384 385 386
  /**
   * @brief getValue could get all inside evaluators' value.
   */
Y
Yu Yang 已提交
387
  real getValue(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
388 389 390 391 392
    return this->getMethodHelper<real>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getValue(name, err);
        });
  }
Y
Yu Yang 已提交
393 394 395 396

  /**
   * @brief getType could get all inside evaluators' type.
   */
Y
Yu Yang 已提交
397
  std::string getType(const std::string& name, Error* err) const override {
Y
Yu Yang 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    return this->getMethodHelper<std::string>(
        name, err, [&name, err](const std::unique_ptr<Evaluator>& eval) {
          return eval->getType(name, err);
        });
  }

private:
  template <typename T>
  T getMethodHelper(const std::string& name,
                    Error* err,
                    const std::function<T(const std::unique_ptr<Evaluator>&)>&
                        callback) const {
    for (auto& eval : evaluators_) {
      std::vector<std::string> names;
      eval->getNames(&names);
      if (std::find(names.begin(), names.end(), name) != names.end()) {
        return callback(eval);
      }
    }
417
    *err = Error("No such key %s", name.c_str());
Y
Yu Yang 已提交
418 419
    return T();
  }
Z
zhangjinchao01 已提交
420 421
};

X
xuwei06 已提交
422 423 424 425 426 427 428
class SubnetEvaluator : public CombinedEvaluator {
public:
  SubnetEvaluator(const std::string& layerName,
                  std::unique_ptr<Evaluator>&& evaluator)
      : layerName_(layerName) {
    addEvaluator(std::move(evaluator));
  }
L
liaogang 已提交
429
  void eval(const NeuralNetwork& nn) override {
X
xuwei06 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    const LayerPtr& layer = nn.getLayer(layerName_);
    CHECK(layer) << "Nonexisted layer: " << layerName_ << " in submodel "
                 << nn.getName();
    bool accessed = false;
    layer->accessSubNetwork([this, &accessed](NeuralNetwork& subnet) {
      subnet.eval(evaluators_[0].get());
      accessed = true;
    });
    CHECK(accessed) << "There is no subnetwork for layer " << layerName_
                    << " in submodel " << nn.getName();
  }

protected:
  std::string layerName_;
};

Y
Yu Yang 已提交
446
Evaluator* NeuralNetwork::makeEvaluator() const {
Z
zhangjinchao01 已提交
447
  CombinedEvaluator* combinedEvaluator = new CombinedEvaluator();
448 449 450 451 452
  auto subModelConfig = std::find_if(config_.sub_models().begin(),
                                     config_.sub_models().end(),
                                     [=](const SubModelConfig& sub_model) {
                                       return sub_model.name() == subModelName_;
                                     });
Z
zhangjinchao01 已提交
453 454 455 456 457 458 459
  bool useSubModel = (subModelConfig != config_.sub_models().end());
  CHECK_EQ(useSubModel, !subModelName_.empty());
  if (useSubModel) {
    // create the evaluators that belong to CURRENT submodel
    for (int i = 0; i < subModelConfig->evaluator_names_size(); ++i) {
      // find evaluator by name
      auto thisEvalConfig = std::find_if(
460 461
          config_.evaluators().begin(),
          config_.evaluators().end(),
Z
zhangjinchao01 已提交
462 463 464 465 466 467 468 469 470 471
          [=](const EvaluatorConfig& ecfg) {
            return ecfg.name() == subModelConfig->evaluator_names(i);
          });
      bool validConfig = (thisEvalConfig != config_.evaluators().end());
      if (validConfig) {
        std::unique_ptr<Evaluator> evaluator(
            Evaluator::create(*thisEvalConfig));
        combinedEvaluator->addEvaluator(std::move(evaluator));
      }
    }
X
xuwei06 已提交
472 473 474 475 476 477 478 479 480
    for (auto& layer : layers_) {
      layer->accessSubNetwork(
          [layer, combinedEvaluator](NeuralNetwork& subnet) {
            std::unique_ptr<Evaluator> subEvaluator(new SubnetEvaluator(
                layer->getName(),
                std::unique_ptr<Evaluator>(subnet.makeEvaluator())));
            combinedEvaluator->addEvaluator(std::move(subEvaluator));
          });
    }
Z
zhangjinchao01 已提交
481 482 483 484 485 486 487 488 489
  } else {
    for (const EvaluatorConfig& evalConfig : config_.evaluators()) {
      std::unique_ptr<Evaluator> evaluator(Evaluator::create(evalConfig));
      combinedEvaluator->addEvaluator(std::move(evaluator));
    }
  }
  return combinedEvaluator;
}

Y
Yu Yang 已提交
490
void NeuralNetwork::eval(Evaluator* evaluator) const { evaluator->eval(*this); }
Z
zhangjinchao01 已提交
491

492 493
#endif

Z
zhangjinchao01 已提交
494 495 496 497 498 499 500
void NeuralNetwork::setOutputGrad(const std::vector<Argument>& args) {
  CHECK_GE(outputLayers_.size(), args.size());
  for (size_t i = 0; i < args.size(); ++i) {
    outputLayers_[i]->getOutput().grad = args[i].grad;
  }
}

501 502 503
extern NeuralNetwork* newCustomNerualNetwork(const std::string& name,
                                             NeuralNetwork* network)
    __attribute__((weak));
L
liaogang 已提交
504

505 506 507 508 509 510 511
NeuralNetwork* NeuralNetwork::newNeuralNetwork(const std::string& name,
                                               NeuralNetwork* rootNetwork) {
  if (newCustomNerualNetwork) {
    return newCustomNerualNetwork(name, rootNetwork);
  } else {
    return new NeuralNetwork(name, rootNetwork);
  }
Z
zhangjinchao01 已提交
512 513 514
}

}  // namespace paddle