mask_head.py 9.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import paddle
16
import paddle.nn as nn
Q
qingqing01 已提交
17 18 19
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingNormal
from paddle.regularizer import L2Decay
20 21

from ppdet.core.workspace import register, create
Q
qingqing01 已提交
22
from ppdet.modeling import ops
F
Feng Ni 已提交
23
from ppdet.modeling.layers import ConvNormLayer
Q
qingqing01 已提交
24

25
from .roi_extractor import RoIAlign
Q
qingqing01 已提交
26 27


28 29
@register
class MaskFeat(nn.Layer):
W
wangguanzhong 已提交
30 31 32 33 34 35 36 37 38 39 40
    """
    Feature extraction in Mask head

    Args:
        in_channel (int): Input channels
        out_channel (int): Output channels
        num_convs (int): The number of conv layers, default 4
        norm_type (string | None): Norm type, bn, gn, sync_bn are available,
            default None
    """

F
Feng Ni 已提交
41
    def __init__(self,
W
wangguanzhong 已提交
42 43
                 in_channel=256,
                 out_channel=256,
F
Feng Ni 已提交
44 45
                 num_convs=4,
                 norm_type=None):
Q
qingqing01 已提交
46 47
        super(MaskFeat, self).__init__()
        self.num_convs = num_convs
W
wangguanzhong 已提交
48 49
        self.in_channel = in_channel
        self.out_channel = out_channel
F
Feng Ni 已提交
50
        self.norm_type = norm_type
W
wangguanzhong 已提交
51 52
        fan_conv = out_channel * 3 * 3
        fan_deconv = out_channel * 2 * 2
53 54

        mask_conv = nn.Sequential()
F
Feng Ni 已提交
55 56 57 58 59 60
        if norm_type == 'gn':
            for i in range(self.num_convs):
                conv_name = 'mask_inter_feat_{}'.format(i + 1)
                mask_conv.add_sublayer(
                    conv_name,
                    ConvNormLayer(
W
wangguanzhong 已提交
61 62
                        ch_in=in_channel if i == 0 else out_channel,
                        ch_out=out_channel,
F
Feng Ni 已提交
63 64 65 66 67
                        filter_size=3,
                        stride=1,
                        norm_type=self.norm_type,
                        norm_name=conv_name + '_norm',
                        initializer=KaimingNormal(fan_in=fan_conv),
G
Guanghua Yu 已提交
68
                        skip_quant=True,
F
Feng Ni 已提交
69 70 71 72 73
                        name=conv_name))
                mask_conv.add_sublayer(conv_name + 'act', nn.ReLU())
        else:
            for i in range(self.num_convs):
                conv_name = 'mask_inter_feat_{}'.format(i + 1)
G
Guanghua Yu 已提交
74 75 76 77 78 79 80 81 82
                conv = nn.Conv2D(
                    in_channels=in_channel if i == 0 else out_channel,
                    out_channels=out_channel,
                    kernel_size=3,
                    padding=1,
                    weight_attr=paddle.ParamAttr(
                        initializer=KaimingNormal(fan_in=fan_conv)))
                conv.skip_quant = True
                mask_conv.add_sublayer(conv_name, conv)
F
Feng Ni 已提交
83
                mask_conv.add_sublayer(conv_name + 'act', nn.ReLU())
84 85 86
        mask_conv.add_sublayer(
            'conv5_mask',
            nn.Conv2DTranspose(
W
wangguanzhong 已提交
87 88
                in_channels=self.in_channel,
                out_channels=self.out_channel,
89 90 91 92 93 94
                kernel_size=2,
                stride=2,
                weight_attr=paddle.ParamAttr(
                    initializer=KaimingNormal(fan_in=fan_deconv))))
        mask_conv.add_sublayer('conv5_mask' + 'act', nn.ReLU())
        self.upsample = mask_conv
Q
qingqing01 已提交
95

96 97 98 99
    @classmethod
    def from_config(cls, cfg, input_shape):
        if isinstance(input_shape, (list, tuple)):
            input_shape = input_shape[0]
W
wangguanzhong 已提交
100
        return {'in_channel': input_shape.channels, }
Q
qingqing01 已提交
101

W
wangguanzhong 已提交
102 103
    def out_channels(self):
        return self.out_channel
104 105 106

    def forward(self, feats):
        return self.upsample(feats)
Q
qingqing01 已提交
107 108 109


@register
110 111 112
class MaskHead(nn.Layer):
    __shared__ = ['num_classes']
    __inject__ = ['mask_assigner']
W
wangguanzhong 已提交
113 114 115 116 117 118 119 120 121 122 123 124
    """
    RCNN mask head

    Args:
        head (nn.Layer): Extract feature in mask head
        roi_extractor (object): The module of RoI Extractor
        mask_assigner (object): The module of Mask Assigner, 
            label and sample the mask
        num_classes (int): The number of classes
        share_bbox_feat (bool): Whether to share the feature from bbox head,
            default false
    """
Q
qingqing01 已提交
125 126

    def __init__(self,
127 128 129 130 131
                 head,
                 roi_extractor=RoIAlign().__dict__,
                 mask_assigner='MaskAssigner',
                 num_classes=80,
                 share_bbox_feat=False):
Q
qingqing01 已提交
132 133
        super(MaskHead, self).__init__()
        self.num_classes = num_classes
134 135 136 137 138

        self.roi_extractor = roi_extractor
        if isinstance(roi_extractor, dict):
            self.roi_extractor = RoIAlign(**roi_extractor)
        self.head = head
W
wangguanzhong 已提交
139
        self.in_channels = head.out_channels()
140 141 142 143 144 145 146 147 148 149
        self.mask_assigner = mask_assigner
        self.share_bbox_feat = share_bbox_feat
        self.bbox_head = None

        self.mask_fcn_logits = nn.Conv2D(
            in_channels=self.in_channels,
            out_channels=self.num_classes,
            kernel_size=1,
            weight_attr=paddle.ParamAttr(initializer=KaimingNormal(
                fan_in=self.num_classes)))
G
Guanghua Yu 已提交
150
        self.mask_fcn_logits.skip_quant = True
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

    @classmethod
    def from_config(cls, cfg, input_shape):
        roi_pooler = cfg['roi_extractor']
        assert isinstance(roi_pooler, dict)
        kwargs = RoIAlign.from_config(cfg, input_shape)
        roi_pooler.update(kwargs)
        kwargs = {'input_shape': input_shape}
        head = create(cfg['head'], **kwargs)
        return {
            'roi_extractor': roi_pooler,
            'head': head,
        }

    def get_loss(self, mask_logits, mask_label, mask_target, mask_weight):
        mask_label = F.one_hot(mask_label, self.num_classes).unsqueeze([2, 3])
        mask_label = paddle.expand_as(mask_label, mask_logits)
        mask_label.stop_gradient = True
        mask_pred = paddle.gather_nd(mask_logits, paddle.nonzero(mask_label))
        shape = mask_logits.shape
        mask_pred = paddle.reshape(mask_pred, [shape[0], shape[2], shape[3]])

        mask_target = mask_target.cast('float32')
        mask_weight = mask_weight.unsqueeze([1, 2])
        loss_mask = F.binary_cross_entropy_with_logits(
            mask_pred, mask_target, weight=mask_weight, reduction="mean")
        return loss_mask

    def forward_train(self, body_feats, rois, rois_num, inputs, targets,
                      bbox_feat):
        """
        body_feats (list[Tensor]): Multi-level backbone features
        rois (list[Tensor]): Proposals for each batch with shape [N, 4]
        rois_num (Tensor): The number of proposals for each batch
        inputs (dict): ground truth info
        """
        tgt_labels, _, tgt_gt_inds = targets
        rois, rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights = self.mask_assigner(
            rois, tgt_labels, tgt_gt_inds, inputs)

        if self.share_bbox_feat:
            rois_feat = paddle.gather(bbox_feat, mask_index)
        else:
            rois_feat = self.roi_extractor(body_feats, rois, rois_num)
        mask_feat = self.head(rois_feat)
        mask_logits = self.mask_fcn_logits(mask_feat)

        loss_mask = self.get_loss(mask_logits, tgt_classes, tgt_masks,
                                  tgt_weights)
        return {'loss_mask': loss_mask}
Q
qingqing01 已提交
201 202 203

    def forward_test(self,
                     body_feats,
204 205 206 207 208 209 210 211 212 213 214 215
                     rois,
                     rois_num,
                     scale_factor,
                     feat_func=None):
        """
        body_feats (list[Tensor]): Multi-level backbone features
        rois (Tensor): Prediction from bbox head with shape [N, 6]
        rois_num (Tensor): The number of prediction for each batch
        scale_factor (Tensor): The scale factor from origin size to input size
        """
        if rois.shape[0] == 0:
            mask_out = paddle.full([1, 1, 1, 1], -1)
Q
qingqing01 已提交
216
        else:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
            bbox = [rois[:, 2:]]
            labels = rois[:, 0].cast('int32')
            rois_feat = self.roi_extractor(body_feats, bbox, rois_num)
            if self.share_bbox_feat:
                assert feat_func is not None
                rois_feat = feat_func(rois_feat)

            mask_feat = self.head(rois_feat)
            mask_logit = self.mask_fcn_logits(mask_feat)
            mask_num_class = mask_logit.shape[1]
            if mask_num_class == 1:
                mask_out = F.sigmoid(mask_logit)
            else:
                num_masks = mask_logit.shape[0]
                mask_out = []
                # TODO: need to optimize gather
G
Guanghua Yu 已提交
233 234 235 236
                for i in range(mask_logit.shape[0]):
                    pred_masks = paddle.unsqueeze(
                        mask_logit[i, :, :, :], axis=0)
                    mask = paddle.gather(pred_masks, labels[i], axis=1)
237 238 239
                    mask_out.append(mask)
                mask_out = F.sigmoid(paddle.concat(mask_out))
        return mask_out
Q
qingqing01 已提交
240 241 242

    def forward(self,
                body_feats,
243 244 245 246 247 248
                rois,
                rois_num,
                inputs,
                targets=None,
                bbox_feat=None,
                feat_func=None):
249
        if self.training:
250 251
            return self.forward_train(body_feats, rois, rois_num, inputs,
                                      targets, bbox_feat)
Q
qingqing01 已提交
252
        else:
253 254 255
            im_scale = inputs['scale_factor']
            return self.forward_test(body_feats, rois, rois_num, im_scale,
                                     feat_func)