efficientdet_d0.yml 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
architecture: EfficientDet
max_iters: 281250
use_gpu: true
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar
weights: output/efficientdet_d0/model_final
log_smooth_window: 20
snapshot_iter: 10000
metric: COCO
save_dir: output
num_classes: 81
use_ema: true
ema_decay: 0.9998

EfficientDet:
  backbone: EfficientNet
  fpn: BiFPN
  efficient_head: EfficientHead
  anchor_grid: AnchorGrid
  box_loss_weight: 50.

EfficientNet:
  # norm_type: sync_bn
  # TODO
  norm_type: bn
  scale: b0
  use_se: true

BiFPN:
  num_chan: 64
  repeat: 3
  levels: 5

EfficientHead:
  repeat: 3
  num_chan: 64
  prior_prob: 0.01
  num_anchors: 9
  gamma: 1.5
  alpha: 0.25
  delta: 0.1
  output_decoder:
    score_thresh: 0.05   # originally 0.
    nms_thresh: 0.5
    pre_nms_top_n: 1000  # originally 5000
    detections_per_im: 100
    nms_eta: 1.0

AnchorGrid:
  anchor_base_scale: 4
  num_scales: 3
  aspect_ratios: [[1, 1], [1.4, 0.7], [0.7, 1.4]]

LearningRate:
  base_lr: 0.16
  schedulers:
  - !CosineDecayWithSkip
    total_steps: 281250
    skip_steps: 938
  - !LinearWarmup
    start_factor: 0.05
    steps: 938

OptimizerBuilder:
  clip_grad_by_norm: 10.
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.00004
    type: L2

TrainReader:
  inputs_def:
    fields: ['image', 'im_id', 'fg_num', 'gt_label', 'gt_target']
  dataset:
    !COCODataSet
    image_dir: train2017
    anno_path: annotations/instances_train2017.json
    dataset_dir: dataset/coco
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !RandomFlipImage
    prob: 0.5
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean: [0.485,0.456,0.406]
    std: [0.229, 0.224,0.225]
  - !RandomScaledCrop
    target_dim: 512
    scale_range: [.1, 2.]
    interp: 1
  - !Permute
    to_bgr: false
    channel_first: true
  - !TargetAssign
    image_size: 512
  batch_size: 16
  shuffle: true
  worker_num: 32
  bufsize: 16
  use_process: true
  drop_empty: false

EvalReader:
  inputs_def:
    fields: ['image', 'im_info', 'im_id']
  dataset:
    !COCODataSet
    image_dir: val2017
    anno_path: annotations/instances_val2017.json
    dataset_dir: dataset/coco
  sample_transforms:
  - !DecodeImage
    to_rgb: true
    with_mixup: false
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean: [0.485,0.456,0.406]
    std: [0.229, 0.224,0.225]
  - !ResizeAndPad
    target_dim: 512
    interp: 1
  - !Permute
    channel_first: true
    to_bgr: false
  drop_empty: false
  batch_size: 16
  shuffle: false
  worker_num: 2

TestReader:
  inputs_def:
    fields: ['image', 'im_info', 'im_id']
    image_shape: [3, 512, 512]
  dataset:
    !ImageFolder
    anno_path: annotations/instances_val2017.json
  sample_transforms:
  - !DecodeImage
    to_rgb: true
    with_mixup: false
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean: [0.485,0.456,0.406]
    std: [0.229, 0.224,0.225]
  - !ResizeAndPad
    target_dim: 512
    interp: 1
  - !Permute
    channel_first: true
    to_bgr: false
  batch_size: 16
  shuffle: false