Fork自 PaddlePaddle / PaddleDetection
# PP-YOLOE Smalldet 检测模型
<img src="https://user-images.githubusercontent.com/82303451/182520025-f6bd1c76-a9f9-4f8c-af9b-b37a403258d8.png" title="VisDrone" alt="VisDrone" width="300"><img src="https://user-images.githubusercontent.com/82303451/182521833-4aa0314c-b3f2-4711-9a65-cabece612737.png" title="VisDrone" alt="VisDrone" width="300"><img src="https://user-images.githubusercontent.com/82303451/182520038-cacd5d09-0b85-475c-8e59-72f1fc48eef8.png" title="DOTA" alt="DOTA" height="168"><img src="https://user-images.githubusercontent.com/82303451/182524123-dcba55a2-ce2d-4ba1-9d5b-eb99cb440715.jpeg" title="Xview" alt="Xview" height="168">
| 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | 下载链接 | 配置文件 | |:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: | |PP-YOLOE-l| Xview | 400 | 0.25 | 60 | 14.5 | 26.8 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_xview_400_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_xview_400_025.yml) | |PP-YOLOE-l| DOTA | 500 | 0.25 | 15 | 46.8 | 72.6 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_dota_500_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_DOTA_500_025.yml) |
|PP-YOLOE-l| VisDrone | 500 | 0.25 | 10 | 29.7 | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
**注意:** - **SLICE_SIZE**表示使用SAHI工具切图后子图的大小(SLICE_SIZE*SLICE_SIZE);**OVERLAP_RATIO**表示切图重叠率。 - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。 - 具体使用教程请参考[ppyoloe](../ppyoloe#getting-start)。