yolov4_cspdarknet_coco.yml 4.3 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
architecture: YOLOv4
use_gpu: true
max_iters: 500200
log_smooth_window: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/CSPDarkNet53_pretrained.pdparams
weights: output/yolov4_cspdarknet_coco/model_final
num_classes: 80
use_fine_grained_loss: true

YOLOv4:
  backbone: CSPDarkNet
  yolo_head: YOLOv4Head

CSPDarkNet:
  norm_type: sync_bn
  norm_decay: 0.
  depth: 53

YOLOv4Head:
  anchors: [[12, 16], [19, 36], [40, 28], [36, 75], [76, 55],
            [72, 146], [142, 110], [192, 243], [459, 401]]
  anchor_masks: [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
  nms:
    background_label: -1
D
dengkaipeng 已提交
28
    keep_top_k: 100
W
wangguanzhong 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42
    nms_threshold: 0.45
    nms_top_k: -1
    normalized: true
    score_threshold: 0.001
  downsample: [8,16,32]
  scale_x_y: [1.2, 1.1, 1.05]

YOLOv3Loss:
  # batch_size here is only used for fine grained loss, not used
  # for training batch_size setting, training batch_size setting
  # is in configs/yolov3_reader.yml TrainReader.batch_size, batch
  # size here should be set as same value as TrainReader.batch_size
  batch_size: 8
  ignore_thresh: 0.7
D
dengkaipeng 已提交
43
  label_smooth: false
W
wangguanzhong 已提交
44 45 46
  downsample: [8,16,32]
  scale_x_y: [1.2, 1.1, 1.05]
  iou_loss: IouLoss
D
dengkaipeng 已提交
47
  ignore_class_score_thresh: 0.25
W
wangguanzhong 已提交
48 49 50 51 52 53

IouLoss:
  loss_weight: 0.07
  max_height: 608
  max_width: 608
  ciou_term: true
D
dengkaipeng 已提交
54
  loss_square: false
W
wangguanzhong 已提交
55 56

LearningRate:
D
dengkaipeng 已提交
57
  base_lr: 0.0013
W
wangguanzhong 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 400000
    - 450000
  - !LinearWarmup
    start_factor: 0.
    steps: 4000

OptimizerBuilder:
  clip_grad_by_norm: 10.
  optimizer:
    momentum: 0.949
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

_READER_: '../yolov3_reader.yml'
TrainReader:
  inputs_def:
D
dengkaipeng 已提交
80 81 82
    fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
    num_max_boxes: 90
  use_fine_grained_loss: true
W
wangguanzhong 已提交
83 84 85 86 87 88 89 90 91
  dataset:
    !COCODataSet
      image_dir: train2017
      anno_path: annotations/instances_train2017.json
      dataset_dir: dataset/coco
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
D
dengkaipeng 已提交
92 93 94 95 96 97 98 99
      with_mosaic: True
    - !MosaicImage
      offset: 0.3
      mosaic_scale: [0.8, 1.0]
      sample_scale: [0.3, 1.0]
      sample_flip: 0.5
      use_cv2: true
      interp: 2
W
wangguanzhong 已提交
100 101
    - !NormalizeBox {}
    - !PadBox
D
dengkaipeng 已提交
102
      num_max_boxes: 90
W
wangguanzhong 已提交
103 104
    - !BboxXYXY2XYWH {}
  batch_transforms:
D
dengkaipeng 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    - !RandomShape
      sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
      random_inter: True
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !Permute
      to_bgr: false
      channel_first: True
    # Gt2YoloTarget is only used when use_fine_grained_loss set as true,
    # this operator will be deleted automatically if use_fine_grained_loss
    # is set as false
    - !Gt2YoloTarget
      anchor_masks: [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
      anchors: [[12, 16], [19, 36], [40, 28],
                [36, 75], [76, 55], [72, 146],
                [142, 110], [192, 243], [459, 401]]
      downsample_ratios: [8, 16, 32]
      iou_thresh: 0.213
W
wangguanzhong 已提交
126
  batch_size: 8
D
dengkaipeng 已提交
127 128
  mosaic_prob: 0.3
  mosaic_epoch: 200
W
wangguanzhong 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  shuffle: true
  drop_last: true
  worker_num: 8
  bufsize: 16
  use_process: true
  drop_empty: false

EvalReader:
  inputs_def:
    fields: ['image', 'im_size', 'im_id']
    num_max_boxes: 90
  dataset:
    !COCODataSet
      image_dir: val2017
      anno_path: annotations/instances_val2017.json
      dataset_dir: dataset/coco
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 1
    - !NormalizeImage
      mean: [0., 0., 0.]
      std: [1., 1., 1.]
      is_scale: True
      is_channel_first: false
    - !PadBox
      num_max_boxes: 90
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 4
  drop_empty: false
  worker_num: 8
  bufsize: 16

TestReader:
  dataset:
    !ImageFolder
    use_default_label: true
    with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 1
    - !NormalizeImage
      mean: [0., 0., 0.]
      std: [1., 1., 1.]
      is_scale: True
      is_channel_first: false
    - !Permute
      to_bgr: false
      channel_first: True