metrics.py 6.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import json
import paddle
import numpy as np

from .category import get_categories
from .map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = ['Metric', 'COCOMetric', 'VOCMetric', 'get_infer_results']


class Metric(paddle.metric.Metric):
    def name(self):
        return self.__class__.__name__

    # paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
    # :metch:`reset`, in ppdet, we also need following 2 methods:

    # abstract method for logging metric results
    def log(self):
        pass

    # abstract method for getting metric results
    def get_results(self):
        pass


class COCOMetric(Metric):
    def __init__(self, anno_file, with_background=True, mask_resolution=None):
        assert os.path.isfile(anno_file), \
                "anno_file {} not a file".format(anno_file)
        self.anno_file = anno_file
        self.with_background = with_background
        self.mask_resolution = mask_resolution
        self.clsid2catid, self.catid2name = get_categories('COCO', anno_file,
                                                           with_background)

        self.reset()

    def reset(self):
        # only bbox and mask evaluation support currently
        self.results = {'bbox': [], 'mask': []}
        self.eval_results = {}

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

        # some input fields also needed
        for k in ['im_id', 'scale_factor', 'im_shape']:
            v = inputs[k]
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

        if 'mask' in outs and 'bbox' in outs:
            from ppdet.py_op.post_process import mask_post_process
            outs['mask'] = mask_post_process(outs, outs['im_shape'],
                                             outs['scale_factor'],
                                             self.mask_resolution)

        infer_results = get_infer_results(outs, self.clsid2catid)
        self.results['bbox'] += infer_results[
            'bbox'] if 'bbox' in infer_results else []
        self.results['mask'] += infer_results[
            'mask'] if 'mask' in infer_results else []

    def accumulate(self):
        if len(self.results['bbox']) > 0:
            with open("bbox.json", 'w') as f:
                json.dump(self.results['bbox'], f)
                logger.info('The bbox result is saved to bbox.json.')

            bbox_stats = cocoapi_eval(
                'bbox.json', 'bbox', anno_file=self.anno_file)
            self.eval_results['bbox'] = bbox_stats
            sys.stdout.flush()

        if len(self.results['mask']) > 0:
            with open("mask.json", 'w') as f:
                json.dump(self.results['mask'], f)
                logger.info('The mask result is saved to mask.json.')

            seg_stats = cocoapi_eval(
                'mask.json', 'segm', anno_file=self.anno_file)
            self.eval_results['mask'] = seg_stats
            sys.stdout.flush()

    def log(self):
        pass

    def get_results(self):
        return self.eval_results


class VOCMetric(Metric):
    def __init__(self,
                 anno_file,
                 with_background=True,
                 class_num=20,
                 overlap_thresh=0.5,
                 map_type='11point',
                 is_bbox_normalized=False,
                 evaluate_difficult=False):
        assert os.path.isfile(anno_file), \
                "anno_file {} not a file".format(anno_file)
        self.anno_file = anno_file
        self.with_background = with_background
        self.clsid2catid, self.catid2name = get_categories('VOC', anno_file,
                                                           with_background)

        self.overlap_thresh = overlap_thresh
        self.map_type = map_type
        self.evaluate_difficult = evaluate_difficult
        self.detection_map = DetectionMAP(
            class_num=class_num,
            overlap_thresh=overlap_thresh,
            map_type=map_type,
            is_bbox_normalized=is_bbox_normalized,
            evaluate_difficult=evaluate_difficult)

        self.reset()

    def reset(self):
        self.detection_map.reset()

    def update(self, inputs, outputs):
        bboxes = outputs['bbox'].numpy()
        bbox_lengths = outputs['bbox_num'].numpy()

        if bboxes.shape == (1, 1) or bboxes is None:
            return
        gt_boxes = inputs['gt_bbox'].numpy()
        gt_labels = inputs['gt_class'].numpy()
        difficults = inputs['difficult'].numpy() if not self.evaluate_difficult \
                            else None

        scale_factor = inputs['scale_factor'].numpy(
        ) if 'scale_factor' in inputs else np.ones(
            (gt_boxes.shape[0], 2)).astype('float32')

        bbox_idx = 0
        for i in range(gt_boxes.shape[0]):
            gt_box = gt_boxes[i]
            h, w = scale_factor[i]
            gt_box = gt_box / np.array([w, h, w, h])
            gt_label = gt_labels[i]
            difficult = None if difficults is None \
                            else difficults[i]
            bbox_num = bbox_lengths[i]
            bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
            gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
                                                             difficult)
            self.detection_map.update(bbox, gt_box, gt_label, difficult)
            bbox_idx += bbox_num

    def accumulate(self):
        logger.info("Accumulating evaluatation results...")
        self.detection_map.accumulate()

    def log(self):
        map_stat = 100. * self.detection_map.get_map()
        logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
                                                       self.map_type, map_stat))

    def get_results(self):
        self.detection_map.get_map()