test_TrainerOnePass.cpp 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/utils/GlobalConstants.h>
Y
Yu Yang 已提交
16
#include <paddle/utils/PythonUtil.h>
Z
zhangjinchao01 已提交
17 18 19 20
#include "paddle/trainer/Trainer.h"
#include "paddle/trainer/TrainerInternal.h"

#include <gtest/gtest.h>
X
Xin Pan 已提交
21
#include <paddle/legacy/pserver/ParameterServer2.h>
Z
zhangjinchao01 已提交
22 23 24 25 26 27 28 29

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

static const string& configFile1 = "trainer/tests/sample_trainer_config.conf";
static const string& configFile2 =
    "trainer/tests/sample_trainer_config_parallel.conf";

30 31 32
static const string& configFileSimpleSparse =
    "trainer/tests/simple_sparse_neural_network.py";

33 34 35 36 37 38
DECLARE_bool(use_gpu);
DECLARE_string(config);
DECLARE_int32(gpu_id);
DECLARE_int32(seed);
DECLARE_int32(num_passes);
DECLARE_int32(saving_period);
Z
zhangjinchao01 已提交
39 40

class TrainerForTest : public paddle::Trainer {
W
Wu Yi 已提交
41
 public:
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48
  inline const std::shared_ptr<ParameterUpdater>& getParameterUpdaterForTest() {
    return this->trainerInternal_.getParameterUpdater();
  }
};

int gNumDevices = 0;

49 50 51 52 53
void trainerOnePassTest(const string& configFile,
                        bool useGpu,
                        bool parallel,
                        int trainerCount = 1,
                        double averageWindow = 0.0f,
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
                        bool doAverageInCpu = false) {
  FLAGS_use_gpu = useGpu;
  FLAGS_parallel_nn = parallel;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
            << " configFile=" << configFile;
  srand(FLAGS_seed);

  if (useGpu) {
    if (gNumDevices < trainerCount) {
      return;
    }
  }

  Trainer trainer;
  auto config = TrainerConfigHelper::createFromFlagConfig();
  if (averageWindow > 0) {
    config->getOptConfig().set_average_window(averageWindow);
    config->getOptConfig().set_do_average_in_cpu(doAverageInCpu);
  }
  trainer.init(config);
  trainer.train();
}

// 1. test trainer (cpu, gpu).
TEST(trainerOnePass, cpu) { trainerOnePassTest(configFile1, false, false); }

82
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
83 84 85 86 87 88
TEST(trainerOnePass, gpu) { trainerOnePassTest(configFile1, true, false); }

TEST(trainerOnePass, gpu2) { trainerOnePassTest(configFile1, true, false, 2); }

TEST(trainerOnePass, gpu4) { trainerOnePassTest(configFile1, true, false, 4); }

L
liaogang 已提交
89 90 91 92 93
TEST(trainerOnePass, parallel) {
  if (hl_get_device_count() >= 2) {
    trainerOnePassTest(configFile2, true, true);
  }
}
Z
zhangjinchao01 已提交
94 95 96
#endif

// 2. test average_window.
97
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
98 99 100 101 102
TEST(average_window, gpu) {
  trainerOnePassTest(configFile1, true, false, 4, 0.01);
}

TEST(average_window, gpu2) {
L
Luo Tao 已提交
103
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
104 105 106 107 108
  trainerOnePassTest(configFile1, true, false, 2, 0.01);
  FLAGS_num_passes = 1;
}

TEST(average_window, gpu4) {
L
Luo Tao 已提交
109
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
110 111 112 113 114
  trainerOnePassTest(configFile1, true, false, 4, 0.01);
  FLAGS_num_passes = 1;
}

TEST(average_window_cpu, gpu2) {
L
Luo Tao 已提交
115
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
116 117 118 119 120
  trainerOnePassTest(configFile1, true, false, 2, 0.01, true);
  FLAGS_num_passes = 1;
}

TEST(average_window_cpu, gpu4) {
L
Luo Tao 已提交
121
  FLAGS_num_passes = 20;
Z
zhangjinchao01 已提交
122 123 124 125 126 127
  trainerOnePassTest(configFile1, true, false, 4, 0.01, true);
  FLAGS_num_passes = 1;
}
#endif

// 3. test trainer + pserver.
128 129 130 131
DECLARE_int32(num_gradient_servers);
DECLARE_int32(port);
DECLARE_bool(local);
DECLARE_bool(use_old_updater);
Z
zhangjinchao01 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

double checkRemoteParameterUpdater(TrainerForTest& trainer) {
  auto gradientMachine = trainer.getGradientMachine();
  auto parameterUpdater = trainer.getParameterUpdaterForTest();
  auto dataProvider = trainer.getDataProvider();
  auto& parameters = gradientMachine->getParameters();
  const TrainerConfig& config = trainer.getConfig();
  const string& alg = config.opt_config().algorithm();

  vector<ParameterPtr> parameterCheck;
  for (auto& parameter : parameters) {
    parameterCheck.emplace_back(
        new Parameter(parameter->getConfig(), /* useGpu= */ false));
    parameterCheck.back()
        ->getBuf(PARAMETER_VALUE)
        ->copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    parameterCheck.back()
        ->getBuf(PARAMETER_GRADIENT)
        ->copyFrom(*parameter->getBuf(PARAMETER_GRADIENT));
  }

  std::unique_ptr<ParameterUpdater> parameterUpdaterCheck;
  if (alg == TrainAlgorithm::SGD) {
    parameterUpdaterCheck.reset(new SgdLocalUpdater(config.opt_config()));
  } else {
    LOG(INFO) << "unsupported algorithm in remote parameter check: " << alg;
    return -1.0;
  }
  parameterUpdaterCheck->init(parameterCheck);

  // gradientMachine->start(config, *dataProvider);
  DataBatch dataBatch;
  int32_t batchSize = config.opt_config().batch_size();
  dataProvider->getNextBatch(batchSize, &dataBatch);
  CHECK(dataBatch.getSize()) << "No data from data provider";
  int64_t actualBatchSize = dataBatch.getSize();
  const vector<Argument>& inArgs = dataBatch.getStreams();
  vector<Argument> outArgs;

171 172 173 174 175 176 177
  UpdateCallback updateCallback = [parameterUpdater,
                                   parameterCheck](Parameter* para) {
    parameterCheck[para->getID()]
        ->getBuf(PARAMETER_GRADIENT)
        ->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    parameterUpdater->update(para);
  };
Z
zhangjinchao01 已提交
178 179 180 181 182 183 184

  parameterUpdater->startPass();
  parameterUpdaterCheck->startPass();

  for (int i = 0; i < config.opt_config().num_batches_per_get_parameter() * 2;
       ++i) {
    PassType passType = parameterUpdater->startBatch(actualBatchSize);
185 186
    gradientMachine->forwardBackward(
        inArgs, &outArgs, passType, updateCallback);
Z
zhangjinchao01 已提交
187 188 189 190 191 192 193 194 195 196 197
    parameterUpdater->finishBatch(0);

    parameterUpdaterCheck->startBatch(actualBatchSize);
    for (auto& para : parameterCheck) {
      parameterUpdaterCheck->update(para.get());
    }
    parameterUpdaterCheck->finishBatch(0);
  }

  double sum = 0.0f;
  for (size_t i = 0; i != parameters.size(); ++i) {
198
    real *v1, *v2;
Z
zhangjinchao01 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    CpuVector trainerPara(parameters[i]->getSize());
    trainerPara.copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE));
    if (!FLAGS_use_gpu) {
      v1 = parameters[i]->getBuf(PARAMETER_VALUE)->getData();
    } else {
      v1 = trainerPara.getData();
    }
    v2 = parameterCheck[i]->getBuf(PARAMETER_VALUE)->getData();

    size_t size = parameters[i]->getSize();
    double diff = 0;
    for (size_t j = 0; j < size; ++j) {
      diff += fabs(v1[j] - v2[j]);
    }
    sum += diff;
    LOG(INFO) << setiosflags(ios::left) << setfill(' ') << setw(20)
              << parameters[i]->getName() << "diff=" << setw(15) << diff;
  }

  parameterUpdater->finishPass();
  parameterUpdaterCheck->finishPass();
  gradientMachine->finish();
  return sum;
}

224 225 226 227
void checkRemoteParameterUpdaterTest(const string& configFile,
                                     bool useGpu,
                                     bool parallel,
                                     int trainerCount = 1,
Z
zhangjinchao01 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
                                     bool useOldUpdater = false,
                                     int num_batches_per_get_parameter = 1) {
  FLAGS_use_gpu = useGpu;
  FLAGS_parallel_nn = parallel;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  FLAGS_use_old_updater = useOldUpdater;
  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
            << " configFile=" << configFile;
  srand(FLAGS_seed);

  if (useGpu) {
    if (gNumDevices < trainerCount) {
      return;
    }
  }

  FLAGS_local = 0;
  std::shared_ptr<ParameterServer2> pserver;
  pserver.reset(new ParameterServer2(std::string(), FLAGS_port));
  pserver->init();
  pserver->start();

  TrainerForTest trainer;
  auto config = TrainerConfigHelper::createFromFlagConfig();
  config->getOptConfig().set_num_batches_per_get_parameter(
      num_batches_per_get_parameter);
  trainer.init(config);
  EXPECT_EQ(checkRemoteParameterUpdater(trainer), 0);

  FLAGS_local = 1;
}

TEST(checkRemoteUpdater, cpuTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, false, false);
}

TEST(checkRemoteUpdater, cpuTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true);
}

269
#ifdef PADDLE_WITH_CUDA
Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
TEST(checkRemoteUpdater, gpuTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false);
}

TEST(checkRemoteUpdater, gpu2Trainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 2);
}

TEST(checkRemoteUpdater, gpu4Trainer) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 4);
}

TEST(checkRemoteUpdater, gpuTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 1, true);
}

TEST(checkRemoteUpdater, gpu2TrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 2, true);
}

TEST(checkRemoteUpdater, gpu4TrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, true, false, 4, true);
}

#endif

TEST(checkRemoteUpdater, cpuDeltaTrainer) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, false, 10);
}

TEST(checkRemoteUpdater, cpuDeltaTrainerOldUpdater) {
  checkRemoteParameterUpdaterTest(configFile1, false, false, 1, true, 10);
}

304 305 306 307
TEST(SgdThreadUpdater, simpleSparseNN) {
  trainerOnePassTest(configFileSimpleSparse, false, false, 1, 0.5, true);
}

Z
zhangjinchao01 已提交
308
int main(int argc, char** argv) {
309
  testing::InitGoogleTest(&argc, argv);
Z
zhangjinchao01 已提交
310 311 312 313 314 315 316 317
  initMain(argc, argv);
  initPython(argc, argv);
  gNumDevices = hl_get_device_count();

  FLAGS_num_passes = 1;          // train one pass
  FLAGS_saving_period = 100000;  // do not save parameteres
  return RUN_ALL_TESTS();
}