tester_helper.h 7.0 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
T
Tao Luo 已提交
18
#include <string>
L
luotao1 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <thread>  // NOLINT
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/platform/profiler.h"

DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
35 36
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
L
luotao1 已提交
37 38 39 40 41

namespace paddle {
namespace inference {

void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
42
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
43
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
44
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
45 46
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
47
    auto &ref_out = ref_outputs[i];
L
luotao1 已提交
48 49
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                  [](int a, int b) { return a * b; });
T
tensor-tang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    EXPECT_GT(size, 0);
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3);
        }
        break;
      }
L
luotao1 已提交
73 74 75 76
    }
  }
}

T
Tao Luo 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
std::unique_ptr<PaddlePredictor> GetPrediction(AnalysisConfig config,
                                               bool use_analysis = true) {
  if (use_analysis) {
    return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
        config);
  } else {
    return CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
        config);
  }
}

size_t GetSize(const PaddleTensor &out) {
  return std::accumulate(out.shape.begin(), out.shape.end(), 1,
                         [](int a, int b) { return a * b; });
}

std::unordered_map<std::string, int> GetFuseStatis(AnalysisConfig config,
                                                   int *num_ops) {
  auto predictor = GetPrediction(config);
  AnalysisPredictor *analysis_predictor =
      dynamic_cast<AnalysisPredictor *>(predictor.get());
  auto &fuse_statis = analysis_predictor->analysis_argument()
                          .Get<std::unordered_map<std::string, int>>(
                              framework::ir::kFuseStatisAttr);
  for (auto &item : fuse_statis) {
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
       analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
    if (node->IsFunction()) {
      ++num;
    }
  }
  *num_ops = num;
  return fuse_statis;
}

L
luotao1 已提交
115 116
void TestOneThreadPrediction(
    AnalysisConfig config, const std::vector<std::vector<PaddleTensor>> inputs,
T
Tao Luo 已提交
117
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
L
luotao1 已提交
118 119
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
T
Tao Luo 已提交
120
  auto predictor = GetPrediction(config, use_analysis);
L
luotao1 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  Timer timer;
  timer.tic();
  for (int i = 0; i < num_times; i++) {
    for (size_t j = 0; j < inputs.size(); j++) {
      predictor->Run(inputs[j], outputs);
    }
  }
  PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times,
            inputs.size());
}

void TestMultiThreadPrediction(
    AnalysisConfig config, const std::vector<std::vector<PaddleTensor>> inputs,
T
Tao Luo 已提交
134 135
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
136 137 138 139 140 141 142
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  std::vector<std::thread> threads;
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  // TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
  // because AttentionLSTM's hard code nodeid will be damanged.
  for (int tid = 0; tid < num_threads; ++tid) {
T
Tao Luo 已提交
143
    predictors.emplace_back(GetPrediction(config, use_analysis));
L
luotao1 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  }
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<std::vector<PaddleTensor>> inputs_tid = inputs;
      std::vector<PaddleTensor> outputs_tid;
      Timer timer;
      timer.tic();
      for (int i = 0; i < num_times; i++) {
        for (size_t j = 0; j < inputs_tid.size(); j++) {
          predictors[tid]->Run(inputs_tid[j], &outputs_tid);
        }
      }
      PrintTime(batch_size, num_times, num_threads, tid,
                timer.toc() / num_times, inputs_tid.size());
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

void TestPrediction(AnalysisConfig config,
                    const std::vector<std::vector<PaddleTensor>> inputs,
T
Tao Luo 已提交
169 170 171
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
  LOG(INFO) << "use_analysis: " << use_analysis;
L
luotao1 已提交
172
  if (num_threads == 1) {
T
Tao Luo 已提交
173
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
174
  } else {
T
Tao Luo 已提交
175 176
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
177 178 179
  }
}

T
Tao Luo 已提交
180 181 182 183 184 185 186 187 188
void CompareNativeAndAnalysis(
    AnalysisConfig config,
    const std::vector<std::vector<PaddleTensor>> inputs) {
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
189 190
}  // namespace inference
}  // namespace paddle