test_inference_nlp.cc 7.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15 16
#include <sys/time.h>
#include <time.h>
T
tensor-tang 已提交
17
#include <fstream>
T
tensor-tang 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19 20 21
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
T
tensor-tang 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLML
#include <mkl_service.h>
#include <omp.h>
#endif
T
tensor-tang 已提交
26 27

DEFINE_string(dirname, "", "Directory of the inference model.");
T
tensor-tang 已提交
28 29 30 31
DEFINE_int32(repeat, 100, "Running the inference program repeat times");
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference");
DEFINE_bool(prepare_vars, true, "Prepare variables before executor");
DEFINE_bool(prepare_context, true, "Prepare Context before executor");
T
tensor-tang 已提交
32

T
tensor-tang 已提交
33 34
DEFINE_int32(num_threads, 1, "Number of threads should be used");

T
tensor-tang 已提交
35 36 37 38 39 40
inline double get_current_ms() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec;
}

T
tensor-tang 已提交
41 42 43 44
// return size of total words
size_t read_datasets(std::vector<paddle::framework::LoDTensor>* out,
                     const std::string& filename) {
  size_t sz = 0;
T
tensor-tang 已提交
45 46
  std::fstream fin(filename);
  std::string line;
T
tensor-tang 已提交
47 48
  out->clear();
  while (getline(fin, line)) {
T
tensor-tang 已提交
49 50 51
    std::istringstream iss(line);
    std::vector<int64_t> ids;
    std::string field;
T
tensor-tang 已提交
52 53 54
    while (getline(iss, field, ' ')) {
      ids.push_back(stoi(field));
    }
T
tensor-tang 已提交
55
    if (ids.size() >= 1024) {
T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64 65 66
      continue;
    }

    paddle::framework::LoDTensor words;
    paddle::framework::LoD lod{{0, ids.size()}};
    words.set_lod(lod);
    int64_t* pdata = words.mutable_data<int64_t>(
        {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace());
    memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t));
    out->emplace_back(words);
    sz += ids.size();
T
tensor-tang 已提交
67
  }
T
tensor-tang 已提交
68 69 70
  return sz;
}

T
tensor-tang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
void ThreadRunInfer(
    const int tid, paddle::framework::Executor* executor,
    paddle::framework::Scope* scope,
    const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
    const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) {
  auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
      new paddle::framework::ProgramDesc(*inference_program));
  std::string feed_holder_name = "feed_" + paddle::string::to_string(tid);
  std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid);
  copy_program->SetFeedHolderName(feed_holder_name);
  copy_program->SetFetchHolderName(fetch_holder_name);

  // 3. Get the feed_target_names and fetch_target_names
  const std::vector<std::string>& feed_target_names =
      copy_program->GetFeedTargetNames();
  const std::vector<std::string>& fetch_target_names =
      copy_program->GetFetchTargetNames();

  PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
  paddle::framework::LoDTensor outtensor;
  fetch_targets[fetch_target_names[0]] = &outtensor;

  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);

  auto& inputs = jobs[tid];
  auto start_ms = get_current_ms();
  for (size_t i = 0; i < inputs.size(); ++i) {
    feed_targets[feed_target_names[0]] = inputs[i];
    executor->Run(*copy_program, scope, &feed_targets, &fetch_targets, true,
                  true, feed_holder_name, fetch_holder_name);
  }
  auto stop_ms = get_current_ms();
  LOG(INFO) << "Tid: " << tid << ", process " << inputs.size()
            << " samples, avg time per sample: "

            << (stop_ms - start_ms) / inputs.size() << " ms";
}

void bcast_datasets(
    const std::vector<paddle::framework::LoDTensor>& datasets,
    std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs,
    const int num_threads) {
  size_t s = 0;
  jobs->resize(num_threads);
  while (s < datasets.size()) {
    for (auto it = jobs->begin(); it != jobs->end(); it++) {
      it->emplace_back(&datasets[s]);
      s++;
      if (s >= datasets.size()) {
        break;
      }
T
tensor-tang 已提交
124
    }
T
tensor-tang 已提交
125
  }
T
tensor-tang 已提交
126 127
}

T
tensor-tang 已提交
128
TEST(inference, nlp) {
T
tensor-tang 已提交
129 130 131 132 133
  if (FLAGS_dirname.empty()) {
    LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
  }
  LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
  std::string dirname = FLAGS_dirname;
T
tensor-tang 已提交
134

T
tensor-tang 已提交
135 136 137 138 139 140
  std::vector<paddle::framework::LoDTensor> datasets;
  size_t num_total_words =
      read_datasets(&datasets, "/home/tangjian/paddle-tj/out.ids.txt");
  LOG(INFO) << "Number of dataset samples(seq len<1024): " << datasets.size();
  LOG(INFO) << "Total number of words: " << num_total_words;

T
tensor-tang 已提交
141
  const bool model_combined = false;
T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150 151 152 153

  // 0. Call `paddle::framework::InitDevices()` initialize all the devices
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  auto executor = paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

  // 2. Initialize the inference_program and load parameters
  std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
  inference_program = InitProgram(&executor, scope, dirname, model_combined);
  if (FLAGS_use_mkldnn) {
    EnableMKLDNN(inference_program);
T
tensor-tang 已提交
154
  }
T
tensor-tang 已提交
155

T
tensor-tang 已提交
156 157 158 159 160 161 162 163
#ifdef PADDLE_WITH_MKLML
  // only use 1 core per thread
  omp_set_dynamic(0);
  omp_set_num_threads(1);
  mkl_set_num_threads(1);
#endif

  double start_ms = 0, stop_ms = 0;
T
tensor-tang 已提交
164
  if (FLAGS_num_threads > 1) {
T
tensor-tang 已提交
165 166 167 168 169 170 171 172
    std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs;
    bcast_datasets(datasets, &jobs, FLAGS_num_threads);
    std::vector<std::unique_ptr<std::thread>> threads;
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads.emplace_back(new std::thread(ThreadRunInfer, i, &executor, scope,
                                           std::ref(inference_program),
                                           std::ref(jobs)));
    }
T
tensor-tang 已提交
173
    start_ms = get_current_ms();
T
tensor-tang 已提交
174 175 176
    for (int i = 0; i < FLAGS_num_threads; ++i) {
      threads[i]->join();
    }
T
tensor-tang 已提交
177
    stop_ms = get_current_ms();
T
tensor-tang 已提交
178

T
tensor-tang 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  } else {
    if (FLAGS_prepare_vars) {
      executor.CreateVariables(*inference_program, scope, 0);
    }
    // always prepare context and burning first time
    std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
    ctx = executor.Prepare(*inference_program, 0);

    // preapre fetch
    const std::vector<std::string>& fetch_target_names =
        inference_program->GetFetchTargetNames();
    PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL);
    std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
    paddle::framework::LoDTensor outtensor;
    fetch_targets[fetch_target_names[0]] = &outtensor;

    // prepare feed
    const std::vector<std::string>& feed_target_names =
        inference_program->GetFeedTargetNames();
    PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL);
    std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;

    // for data and run
T
tensor-tang 已提交
202
    start_ms = get_current_ms();
T
tensor-tang 已提交
203 204 205 206 207
    for (size_t i = 0; i < datasets.size(); ++i) {
      feed_targets[feed_target_names[0]] = &(datasets[i]);
      executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
                                  &fetch_targets, !FLAGS_prepare_vars);
    }
T
tensor-tang 已提交
208
    stop_ms = get_current_ms();
T
tensor-tang 已提交
209
  }
T
tensor-tang 已提交
210 211 212 213 214

  LOG(INFO) << "Total inference time with " << FLAGS_num_threads
            << " threads : " << (stop_ms - start_ms) / 1000.0
            << " sec, avg time per seq: "
            << (stop_ms - start_ms) / datasets.size() << " ms";
T
tensor-tang 已提交
215
  delete scope;
T
tensor-tang 已提交
216
}