recurrent_op.h 5.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/operator.h"

namespace paddle {
namespace operators {

namespace rnn {

/**
 * Memory of a RNN (same as the role of `Momory` in PaddlePaddle).
 *
 * Memory attributes cached by this op, dims will be infered from
 * boot memories in father scope. Other attributes are copied from Op's proto
 * attributes.
 */
struct MemoryAttr {
  // name of current state variable
  std::string var;
  // name of previous step's state variable
  std::string pre_var;
  // name of the variables to init this memory (same role of `boot_layer` in
  // PaddlePaddle), which is store in father's scope.
  std::string boot_var;
};

struct Link {
  // input or output links name.
  std::string internal;
  // alias to avoid duplicate keys in scopes.
  std::string external;
};

struct Argument {
  std::string step_net;
  std::string step_scopes;
  std::vector<Link> inlinks;
  std::vector<Link> outlinks;
  std::vector<rnn::MemoryAttr> memories;
};

struct ArgumentName {
  std::string step_net;
  std::string step_scopes;
  std::string inlinks;
  std::string outlinks;
  std::string inlink_alias;   // the alias of inlinks in step net.
  std::string outlink_alias;  // the alias of outlinks in step net.
  std::string memories;       // the memory name
  std::string pre_memories;   // the previous memory name
  std::string boot_memories;  // the boot memory name
};

/**
 * Prepare inputs for each step net.
 */
Y
Yu Yang 已提交
71
void SegmentInputs(const std::vector<Scope*>& step_scopes,
Y
Yan Chunwei 已提交
72
                   const std::vector<Link>& inlinks,
73
                   const size_t seq_len,
D
dangqingqing 已提交
74
                   bool infer_shape_mode);
Y
Yan Chunwei 已提交
75 76 77 78

/**
 * Process outputs of step nets and merge to variables.
 */
Y
Yu Yang 已提交
79
void ConcatOutputs(const std::vector<Scope*>& step_scopes,
Y
Yan Chunwei 已提交
80
                   const std::vector<Link>& outlinks,
81
                   const size_t seq_len,
D
dangqingqing 已提交
82
                   bool infer_shape_mode);
Y
Yan Chunwei 已提交
83

Y
Yu Yang 已提交
84
void LinkMemories(const std::vector<Scope*>& step_scopes,
Y
Yan Chunwei 已提交
85
                  const std::vector<MemoryAttr>& memories,
86 87
                  const size_t step_id,
                  const int offset,
D
dangqingqing 已提交
88
                  bool infer_shape_mode);
Y
Yan Chunwei 已提交
89 90 91 92 93 94

void InitArgument(const ArgumentName& name, Argument* arg);

};  // namespace rnn

// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
L
liaogang 已提交
95
// TODO(Yan Chunwei):
Y
Yan Chunwei 已提交
96 97 98 99 100 101 102 103
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
// 4. More Complex RNN architecture, such as Gated Feedback RNN.
//    Refer to: https://arxiv.org/pdf/1502.02367.pdf

class RecurrentAlgorithm {
public:
Y
Yu Yang 已提交
104
  void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
105 106 107 108 109 110

  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

  /**
   * InferShape must be called before Run.
   */
Y
Yu Yang 已提交
111
  void InferShape(const Scope& scope) const;
Y
Yan Chunwei 已提交
112 113 114 115 116 117 118 119

protected:
  /*
   * The step scopes will be stored in the father scope as a variable.
   *
   * NOTE the scopes are reused in both the forward and backward, so just
   * create once and expand its size if more steps need.
   */
Y
Yu Yang 已提交
120
  void CreateScopes(const Scope& scope) const;
Y
Yan Chunwei 已提交
121

Y
Yu Yang 已提交
122 123
  const std::vector<Scope*>& GetStepScopes(const Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
124 125
  }

D
dangqingqing 已提交
126
  void InitMemories(Scope* step_scopes, bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

private:
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

class RecurrentGradientAlgorithm {
  /**
   * RNN's backward alogorithm.
   *
   * To accelerate the development of RecurrentGradientOp, we decouple RNN's
   * algorithm and `OperatorBase`'s implementation, the former contains the core
   * implementation of a RNN, and will keep stable even if the framework changes
   * a
   * lot, and the latter is a wrapper acts like an dapter for it to make RNN an
   * operator.
   */
public:
  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

Y
Yu Yang 已提交
147
  void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
148

D
dangqingqing 已提交
149
  void LinkBootMemoryGradients(Scope* step_scopes, bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
150 151 152 153

  /**
   * InferShape must be called before Run.
   */
Y
Yu Yang 已提交
154
  void InferShape(const Scope& scope) const;
Y
Yan Chunwei 已提交
155 156

protected:
Y
Yu Yang 已提交
157 158
  inline const std::vector<Scope*>& GetStepScopes(const Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)->GetMutable<std::vector<Scope*>>();
Y
Yan Chunwei 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172
  }

private:
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

class RecurrentOp final : public OperatorBase {
public:
  void Init() override;

  /**
   * InferShape must be called before Run.
   */
L
liaogang 已提交
173
  void InferShape(const Scope& scope) const override { alg_.InferShape(scope); }
Y
Yan Chunwei 已提交
174

L
liaogang 已提交
175 176
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

private:
  RecurrentAlgorithm alg_;
};

class RecurrentGradientOp final : public OperatorBase {
public:
  void Init() override;

  /**
   * InferShape must be called before Run.
   */
L
liaogang 已提交
193
  void InferShape(const Scope& scope) const override { alg_.InferShape(scope); }
Y
Yan Chunwei 已提交
194

L
liaogang 已提交
195 196
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
197 198 199 200 201 202 203 204 205 206 207
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

private:
  RecurrentGradientAlgorithm alg_;
};

}  // namespace operators
}  // namespace paddle