“e9549cbb78b01a570ded56b54cd1f5a0e5f44f12”上不存在“paddle/legacy/math/SIMDFunctions.cpp”
test_recognize_digits.py 9.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import paddle.fluid.core as core
16
import math
武毅 已提交
17
import os
18 19 20 21 22 23 24 25
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
26 27 28 29 30 31 32

BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
33
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
34 35
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
52
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
53 54 55 56 57 58 59 60 61 62
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


63 64 65 66 67
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
          model_filename=None,
武毅 已提交
68 69
          params_filename=None,
          is_local=True):
70 71
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
72 73 74
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

75
    if nn_type == 'mlp':
Y
Yang Yu 已提交
76 77 78 79
        net_conf = mlp
    else:
        net_conf = conv_net

80
    if parallel:
81
        places = get_places()
Y
Yang Yu 已提交
82 83 84 85
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            img_ = pd.read_input(img)
            label_ = pd.read_input(label)
L
Liu Yiqun 已提交
86 87
            prediction, avg_loss, acc = net_conf(img_, label_)
            for o in [avg_loss, acc]:
Y
Yang Yu 已提交
88 89 90 91
                pd.write_output(o)

        avg_loss, acc = pd()
        # get mean loss and acc through every devices.
Y
Yu Yang 已提交
92 93
        avg_loss = fluid.layers.mean(avg_loss)
        acc = fluid.layers.mean(acc)
Y
Yang Yu 已提交
94
    else:
L
Liu Yiqun 已提交
95
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
96

97
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
98

W
Wu Yi 已提交
99
    optimizer = fluid.optimizer.Adam(learning_rate=0.001, LARS_weight_decay=0.3)
W
Wu Yi 已提交
100
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
101

102
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
103 104 105 106 107 108 109

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
110 111
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
112 113
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
                        return
                    else:
145
                        print(
武毅 已提交
146 147
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
148
                                   float(avg_loss_val), float(acc_val)))
武毅 已提交
149 150 151 152 153 154 155
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
156 157
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
158 159 160 161
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
162
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
163
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
164 165
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
166
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
167
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
168 169 170 171 172 173 174 175
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
176 177


178 179 180 181
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
182 183 184
    if save_dirname is None:
        return

185
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
186 187
    exe = fluid.Executor(place)

188 189 190 191 192 193
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
194 195 196
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
197 198 199 200 201 202 203 204 205 206 207 208

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
209
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
210 211


212
def main(use_cuda, parallel, nn_type, combine):
213 214 215
    save_dirname = None
    model_filename = None
    params_filename = None
216 217
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
218
        if combine == True:
219 220
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
221

武毅 已提交
222
    # call train() with is_local argument to run distributed train
223 224 225 226
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
227
        save_dirname=save_dirname,
228 229
        model_filename=model_filename,
        params_filename=params_filename)
230 231 232
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
233 234
        model_filename=model_filename,
        params_filename=params_filename)
235 236 237 238 239 240


class TestRecognizeDigits(unittest.TestCase):
    pass


241
def inject_test_method(use_cuda, parallel, nn_type, combine):
242 243 244 245 246 247
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
248
                main(use_cuda, parallel, nn_type, combine)
249

250 251 252 253
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
254 255 256 257 258 259

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
260 261
        if use_cuda and not core.is_compiled_with_cuda():
            continue
262 263
        for parallel in (False, True):
            for nn_type in ('mlp', 'conv'):
264 265
                inject_test_method(use_cuda, parallel, nn_type, True)

266
    # Two unit-test for saving parameters as separate files
267
    inject_test_method(False, False, 'mlp', False)
268
    inject_test_method(False, False, 'conv', False)
269 270 271 272 273 274


inject_all_tests()

if __name__ == '__main__':
    unittest.main()