keypoint_detector.cc 8.0 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/keypoint_detector.h"

namespace PaddleDetection {

// Load Model and create model predictor
void KeyPointDetector::LoadModel(std::string model_file, int num_theads) {
  MobileConfig config;
  config.set_threads(num_theads);
  config.set_model_from_file(model_file + "/model.nb");
  config.set_power_mode(LITE_POWER_HIGH);

  predictor_ = std::move(CreatePaddlePredictor<MobileConfig>(config));
}

const int edge[][2] = {{0, 1},
                       {0, 2},
                       {1, 3},
                       {2, 4},
                       {3, 5},
                       {4, 6},
                       {5, 7},
                       {6, 8},
                       {7, 9},
                       {8, 10},
                       {5, 11},
                       {6, 12},
                       {11, 13},
                       {12, 14},
                       {13, 15},
                       {14, 16},
                       {11, 12}};
// Visualiztion MaskDetector results
cv::Mat VisualizeKptsResult(const cv::Mat& img,
                            const std::vector<KeyPointResult>& results,
                            const std::vector<int>& colormap) {
  cv::Mat vis_img = img.clone();
  for (int batchid = 0; batchid < results.size(); batchid++) {
    for (int i = 0; i < results[batchid].num_joints; i++) {
      if (results[batchid].keypoints[i * 3] > 0.5) {
        int x_coord = int(results[batchid].keypoints[i * 3 + 1]);
        int y_coord = int(results[batchid].keypoints[i * 3 + 2]);
        cv::circle(vis_img,
                   cv::Point2d(x_coord, y_coord),
                   1,
                   cv::Scalar(0, 0, 255),
                   2);
      }
    }
    for (int i = 0; i < results[batchid].num_joints; i++) {
      int x_start = int(results[batchid].keypoints[edge[i][0] * 3 + 1]);
      int y_start = int(results[batchid].keypoints[edge[i][0] * 3 + 2]);
      int x_end = int(results[batchid].keypoints[edge[i][1] * 3 + 1]);
      int y_end = int(results[batchid].keypoints[edge[i][1] * 3 + 2]);
      cv::line(vis_img,
               cv::Point2d(x_start, y_start),
               cv::Point2d(x_end, y_end),
               colormap[i],
               1);
    }
  }
  return vis_img;
}

void KeyPointDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

void KeyPointDetector::Postprocess(std::vector<float> output,
                                   std::vector<int64_t> output_shape,
                                   std::vector<int64_t> idxout,
                                   std::vector<int64_t> idx_shape,
                                   std::vector<KeyPointResult>* result,
                                   std::vector<std::vector<float>>& center_bs,
                                   std::vector<std::vector<float>>& scale_bs) {
  float* preds = new float[output_shape[1] * 3]{0};

  for (int batchid = 0; batchid < output_shape[0]; batchid++) {
    get_final_preds(const_cast<float*>(output.data()),
                    output_shape,
                    idxout.data(),
                    idx_shape,
                    center_bs[batchid],
                    scale_bs[batchid],
                    preds,
                    batchid);
    KeyPointResult result_item;
    result_item.num_joints = output_shape[1];
    result_item.keypoints.clear();
    for (int i = 0; i < output_shape[1]; i++) {
      result_item.keypoints.emplace_back(preds[i * 3]);
      result_item.keypoints.emplace_back(preds[i * 3 + 1]);
      result_item.keypoints.emplace_back(preds[i * 3 + 2]);
    }
    result->push_back(result_item);
  }
  delete[] preds;
}

void KeyPointDetector::Predict(const std::vector<cv::Mat> imgs,
                               std::vector<std::vector<float>>& center_bs,
                               std::vector<std::vector<float>>& scale_bs,
                               const double threshold,
                               const int warmup,
                               const int repeats,
                               std::vector<KeyPointResult>* result,
                               std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;

  // Preprocess image
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);

    // TODO: reduce cost time
    in_data_all.insert(
        in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }

  // Prepare input tensor

  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputByName(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
      in_tensor->Resize({batch_size, 3, rh, rw});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
    }
  }

  auto preprocess_end = std::chrono::steady_clock::now();
  std::vector<int64_t> output_shape, idx_shape;
  // Run predictor
  // warmup
  for (int i = 0; i < warmup; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetTensor(output_names[0]);
    auto idx_tensor = predictor_->GetTensor(output_names[1]);
  }

  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetTensor(output_names[0]);
    output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }
    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    std::copy_n(
        out_tensor->mutable_data<float>(), output_size, output_data_.data());

    auto idx_tensor = predictor_->GetTensor(output_names[1]);
    idx_shape = idx_tensor->shape();
    // Calculate output length
    output_size = 1;
    for (int j = 0; j < idx_shape.size(); ++j) {
      output_size *= idx_shape[j];
    }
    idx_data_.resize(output_size);
    std::copy_n(
        idx_tensor->mutable_data<int64_t>(), output_size, idx_data_.data());
  }
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
  // Postprocessing result
  Postprocess(output_data_,
              output_shape,
              idx_data_,
              idx_shape,
              result,
              center_bs,
              scale_bs);
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
}

}  // namespace PaddleDetection