jitcode.h 3.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

#include <type_traits>
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/jitkernels/jitcode_base.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32

#define XBYAK_USE_MMAP_ALLOCATOR
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"

namespace paddle {
namespace operators {
namespace jitkernels {
namespace jitcode {

// Application Binary Interface
constexpr Xbyak::Operand::Code abi_param1(Xbyak::Operand::RDI),
    abi_param2(Xbyak::Operand::RSI), abi_param3(Xbyak::Operand::RDX),
T
tensor-tang 已提交
33
    abi_param4(Xbyak::Operand::RCX);
T
tensor-tang 已提交
34

T
tensor-tang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
constexpr Xbyak::Operand::Code g_abi_regs[] = {
    Xbyak::Operand::RBX, Xbyak::Operand::RBP, Xbyak::Operand::R12,
    Xbyak::Operand::R13, Xbyak::Operand::R14, Xbyak::Operand::R15};

constexpr int num_g_abi_regs = sizeof(g_abi_regs) / sizeof(g_abi_regs[0]);

using reg64_t = const Xbyak::Reg64;
using reg32_t = const Xbyak::Reg32;
using xmm_t = const Xbyak::Xmm;
using ymm_t = const Xbyak::Ymm;
using zmm_t = const Xbyak::Zmm;
using Label = Xbyak::Label;

typedef enum {
  mul = 0,
  add,
  sub,
  relu,
  exp,
  sigmoid,
  tanh,
  identity
} operand_type;

#define XMM_FLOAT_BLOCK 4
#define YMM_FLOAT_BLOCK 8
#define ZMM_FLOAT_BLOCK 16

#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0

#define DECLARE_JIT_CODE(codename) \
  const char* name() const override { return #codename; }

class JitCode : public JitBase, public Xbyak::CodeGenerator {
T
tensor-tang 已提交
71
 public:
T
tensor-tang 已提交
72
  explicit JitCode(size_t code_size, void* code_ptr = nullptr)
T
tensor-tang 已提交
73 74 75 76
      : Xbyak::CodeGenerator(code_size, code_ptr) {
    this->genCode();
  }

T
tensor-tang 已提交
77
  size_t getSize() const override { return CodeGenerator::getSize(); }
T
tensor-tang 已提交
78 79 80 81
  const unsigned char* getCodeInternal() override {
    const Xbyak::uint8* code = CodeGenerator::getCode();
    return code;
  }
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94

  virtual const char* name() const = 0;
  virtual void genCode() = 0;

 protected:
  Xbyak::Reg64 param1{abi_param1};
  const int EVEX_max_8b_offt = 0x200;
  const Xbyak::Reg64 reg_EVEX_max_8b_offt = rbp;

  virtual void preCode() {
    for (int i = 0; i < num_g_abi_regs; ++i) {
      push(Xbyak::Reg64(g_abi_regs[i]));
    }
T
tensor-tang 已提交
95
    if (platform::MayIUse(platform::avx512f)) {
T
tensor-tang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
      mov(reg_EVEX_max_8b_offt, 2 * EVEX_max_8b_offt);
    }
  }
  virtual void postCode() {
    for (int i = 0; i < num_g_abi_regs; ++i) {
      pop(Xbyak::Reg64(g_abi_regs[num_g_abi_regs - 1 - i]));
    }
    ret();
  }
  void L(const char* label) { Xbyak::CodeGenerator::L(label); }
  void L(const Xbyak::Label& label) { Xbyak::CodeGenerator::L(label); }
  // Enhanced vector extension
  Xbyak::Address EVEX_compress_addr(Xbyak::Reg64 base, int offt,
                                    bool bcast = false) {
    int scale = 0;
    // Learn from https://github.com/intel/mkl-dnn
    if (EVEX_max_8b_offt <= offt && offt < 3 * EVEX_max_8b_offt) {
      offt = offt - 2 * EVEX_max_8b_offt;
      scale = 1;
    } else if (3 * EVEX_max_8b_offt <= offt && offt < 5 * EVEX_max_8b_offt) {
      offt = offt - 4 * EVEX_max_8b_offt;
      scale = 2;
    }
    auto re = Xbyak::RegExp() + base + offt;
    if (scale) {
      re = re + reg_EVEX_max_8b_offt * scale;
    }
    if (bcast) {
      return zword_b[re];
    } else {
      return zword[re];
    }
  }
T
tensor-tang 已提交
129 130 131 132 133 134
};

}  // namespace jitcode
}  // namespace jitkernels
}  // namespace operators
}  // namespace paddle