test_pool3d_op.py 9.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16
import unittest
import numpy as np
17

18
import paddle.fluid.core as core
C
chengduoZH 已提交
19 20 21
from op_test import OpTest


22 23 24 25 26 27
def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False):
C
chengduoZH 已提交
28
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
29 30
    if global_pool == 1:
        ksize = [D, H, W]
31 32 33 34 35 36 37 38 39
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
             ) / strides[0] + 1 if ceil_mode else (H - ksize[0] + 2 *
                                                   paddings[0]) / strides[0] + 1
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
             ) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
                                                   paddings[1]) / strides[1] + 1
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
             ) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
                                                   paddings[2]) / strides[2] + 1
C
chengduoZH 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    out = np.zeros((N, C, D_out, H_out, W_out))
    for k in xrange(D_out):
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
        for i in xrange(H_out):
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            for j in xrange(W_out):
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
    return out


56 57 58 59 60 61
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False):
C
chengduoZH 已提交
62
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
63 64
    if global_pool == 1:
        ksize = [D, H, W]
65 66 67 68 69 70 71 72 73
    D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
             ) / strides[0] + 1 if ceil_mode else (H - ksize[0] + 2 *
                                                   paddings[0]) / strides[0] + 1
    H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
             ) / strides[1] + 1 if ceil_mode else (W - ksize[1] + 2 *
                                                   paddings[1]) / strides[1] + 1
    W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
             ) / strides[2] + 1 if ceil_mode else (W - ksize[2] + 2 *
                                                   paddings[2]) / strides[2] + 1
C
chengduoZH 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    out = np.zeros((N, C, D_out, H_out, W_out))
    for k in xrange(D_out):
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
        for i in xrange(H_out):
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            for j in xrange(W_out):
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3, 4)) / (
                    (d_end - d_start) * (h_end - h_start) * (w_end - w_start))
    return out


class TestPool3d_Op(OpTest):
    def setUp(self):
93
        self.use_cudnn = False
C
fix bug  
chengduoZH 已提交
94
        self.init_test_case()
C
chengduoZH 已提交
95 96 97
        self.init_global_pool()
        self.init_op_type()
        self.init_pool_type()
98
        self.init_ceil_mode()
C
chengduoZH 已提交
99

C
fix bug  
chengduoZH 已提交
100 101
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
C
chengduoZH 已提交
102 103
        input = np.random.random(self.shape).astype("float32")
        output = self.pool3D_forward_naive(input, self.ksize, self.strides,
104 105
                                           self.paddings, self.global_pool,
                                           self.ceil_mode).astype("float32")
106
        self.inputs = {'X': input}
C
chengduoZH 已提交
107 108 109 110 111

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
112 113
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
114
            'use_cudnn': self.use_cudnn,
115
            'ceil_mode': self.ceil_mode,
116
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
C
chengduoZH 已提交
117 118
        }

Y
Yu Yang 已提交
119
        self.outputs = {'Out': output.astype('float32')}
C
chengduoZH 已提交
120

121 122 123
    def testcudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
124
    def test_check_output(self):
125
        if self.testcudnn():
126 127 128 129
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
130 131

    def test_check_grad(self):
132
        if self.testcudnn() and self.pool_type != "max":
133 134 135 136
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
137
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
138

C
fix bug  
chengduoZH 已提交
139
    def init_test_case(self):
C
chengduoZH 已提交
140 141 142 143 144
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [0, 0, 0]

C
chengduoZH 已提交
145 146 147 148 149 150 151 152 153 154
    def init_op_type(self):
        self.op_type = "pool3d"

    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = True

155 156 157
    def init_ceil_mode(self):
        self.ceil_mode = False

C
chengduoZH 已提交
158 159

class TestCase1(TestPool3d_Op):
C
fix bug  
chengduoZH 已提交
160
    def init_test_case(self):
C
chengduoZH 已提交
161 162 163 164
        self.op_type = "pool3d"
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
C
chengduoZH 已提交
165
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
166

C
chengduoZH 已提交
167
    def init_op_type(self):
C
chengduoZH 已提交
168
        self.op_type = "pool3d"
C
chengduoZH 已提交
169 170

    def init_pool_type(self):
C
chengduoZH 已提交
171 172
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive
C
chengduoZH 已提交
173 174 175 176 177 178 179

    def init_global_pool(self):
        self.global_pool = False


class TestCase2(TestPool3d_Op):
    def init_test_case(self):
C
chengduoZH 已提交
180 181 182 183 184
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
185 186 187 188 189 190 191 192 193 194
    def init_op_type(self):
        self.op_type = "pool3d"

    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
195 196

class TestCase3(TestPool3d_Op):
C
chengduoZH 已提交
197
    def init_op_type(self):
C
chengduoZH 已提交
198
        self.op_type = "pool3d"
C
chengduoZH 已提交
199 200

    def init_pool_type(self):
C
chengduoZH 已提交
201 202 203 204
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive


C
chengduoZH 已提交
205 206
class TestCase4(TestCase1):
    def init_op_type(self):
C
chengduoZH 已提交
207
        self.op_type = "pool3d"
C
chengduoZH 已提交
208 209

    def init_pool_type(self):
C
chengduoZH 已提交
210 211
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
212 213


C
chengduoZH 已提交
214 215
class TestCase5(TestCase2):
    def init_op_type(self):
C
chengduoZH 已提交
216
        self.op_type = "pool3d"
C
chengduoZH 已提交
217 218

    def init_pool_type(self):
C
chengduoZH 已提交
219 220
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
221 222


223 224
#--------------------test pool3d--------------------
class TestCUDNNCase1(TestPool3d_Op):
C
chengduoZH 已提交
225
    def init_op_type(self):
226 227
        self.use_cudnn = True
        self.op_type = "pool3d"
C
chengduoZH 已提交
228 229


230
class TestCUDNNCase2(TestCase1):
C
chengduoZH 已提交
231
    def init_op_type(self):
232 233
        self.use_cudnn = True
        self.op_type = "pool3d"
C
chengduoZH 已提交
234 235


236
class TestCUDNNCase3(TestCase2):
C
chengduoZH 已提交
237
    def init_op_type(self):
238 239
        self.use_cudnn = True
        self.op_type = "pool3d"
C
chengduoZH 已提交
240 241


242
class TestCUDNNCase4(TestCase3):
C
chengduoZH 已提交
243
    def init_op_type(self):
244 245
        self.use_cudnn = True
        self.op_type = "pool3d"
C
chengduoZH 已提交
246 247


248
class TestCUDNNCase5(TestCase4):
C
chengduoZH 已提交
249
    def init_op_type(self):
250 251
        self.use_cudnn = True
        self.op_type = "pool3d"
C
chengduoZH 已提交
252 253


254
class TestCUDNNCase6(TestCase5):
C
chengduoZH 已提交
255
    def init_op_type(self):
256 257
        self.use_cudnn = True
        self.op_type = "pool3d"
C
chengduoZH 已提交
258

C
chengduoZH 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
class TestCeilModeCase1(TestCUDNNCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase2(TestCUDNNCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase3(TestCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase4(TestCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


C
chengduoZH 已提交
280 281
if __name__ == '__main__':
    unittest.main()