rnn_multi_gpu.py 11.6 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
#!/usr/bin/env python
from six.moves import xrange  # pylint: disable=redefined-builtin
import re
import math
import time
import numpy as np
from datetime import datetime

import reader
import tensorflow as tf
from tensorflow.python.ops import rnn

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_integer('batch_size', 64,
                            """Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('num_layers', 1,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('max_len', 100,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('hidden_size', 128,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer('emb_size', 64,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_boolean('log_device_placement', False,
                            """Whether to log device placement.""")
tf.app.flags.DEFINE_integer('num_gpus', 4,
                            """How many GPUs to use.""")

VOCAB_SIZE=30000
NUM_CLASS=2


NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN=50000
NUM_EPOCHS_PER_DECAY=50
INITIAL_LEARNING_RATE = 0.1 
LEARNING_RATE_DECAY_FACTOR = 0.1
TOWER_NAME = 'tower'

train_dataset = reader.create_datasets("imdb.pkl", VOCAB_SIZE)

def get_incoming_shape(incoming):
    """ Returns the incoming data shape """
    if isinstance(incoming, tf.Tensor):
        return incoming.get_shape().as_list()
    elif type(incoming) in [np.array, list, tuple]:
        return np.shape(incoming)
    else:
        raise Exception("Invalid incoming layer.")


# Note input * W is done in LSTMCell, 
# which is different from PaddlePaddle
def single_lstm(name, incoming, n_units, use_peepholes=True, 
         return_seq=False, return_state=False):
  with tf.name_scope(name) as scope:
    cell = tf.nn.rnn_cell.LSTMCell(n_units, use_peepholes=use_peepholes)
    output, _cell_state = rnn.rnn(cell, incoming, dtype=tf.float32)
    out = output if return_seq else output[-1]
    return (out, _cell_state) if return_state else out


def lstm(name, incoming, n_units, use_peepholes=True, 
         return_seq=False, return_state=False, num_layers=1):
  with tf.name_scope(name) as scope:
    lstm_cell = tf.nn.rnn_cell.LSTMCell(n_units, use_peepholes=use_peepholes)
    cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
    initial_state = cell.zero_state(FLAGS.batch_size, dtype=tf.float32)
    if not isinstance(incoming, list):
        # if the input is embeding, the Tensor shape : [None, time_step, emb_size]
        incoming = [tf.squeeze(input_, [1])
                  for input_ in tf.split(1, FLAGS.max_len, incoming)]
    outputs, state = tf.nn.rnn(cell, incoming, initial_state=initial_state,
                               dtype=tf.float32)
    out = outputs if return_seq else outputs[-1]
    return (out, _cell_state) if return_state else out


def embedding(name, incoming, vocab_size, emb_size):
  with tf.name_scope(name) as scope:
    #with tf.device("/cpu:0"):
      embedding = tf.get_variable(
            name+'_emb', [vocab_size, emb_size], dtype=tf.float32)
      out = tf.nn.embedding_lookup(embedding, incoming)
      return out 


def fc(name, inpOp, nIn, nOut, act=True):
    with tf.name_scope(name) as scope:
        kernel = tf.get_variable(name + '_w', [nIn, nOut],
            initializer=tf.truncated_normal_initializer(stddev=0.01, dtype=tf.float32),
            dtype=tf.float32)

        biases = tf.get_variable(name + '_b', [nOut],
            initializer=tf.constant_initializer(value=0.0, dtype=tf.float32),
            dtype=tf.float32,trainable=True)

        net = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
                  tf.matmul(inpOp, kernel) + biases

        return net


def inference(seq):
    net = embedding('emb', seq, VOCAB_SIZE, FLAGS.emb_size)
    print "emb:", get_incoming_shape(net)
    net = lstm('lstm', net, FLAGS.hidden_size, num_layers=FLAGS.num_layers)
    print "lstm:", get_incoming_shape(net)
    net = fc('fc1', net, FLAGS.hidden_size, 2)
    return net


def loss(logits, labels):
    # one label index for one sample
    #labels = tf.cast(labels, tf.int64)
    # cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
    #                logits, labels, name='cross_entropy_per_example')
    labels = tf.cast(labels, tf.float32)
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
                    logits, labels, name='cross_entropy_per_example')
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    tf.add_to_collection('losses', cross_entropy_mean)
    return tf.add_n(tf.get_collection('losses'), name='total_loss')


def tower_loss(scope):
    """Calculate the total loss on a single tower running the model.
    Args:
        scope: unique prefix string identifying the tower, e.g. 'tower_0'
    Returns:
        Tensor of shape [] containing the total loss for a batch of data
    """
    data, label = train_dataset.next_batch(FLAGS.batch_size)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    last_layer = inference(data)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    #_ = loss(last_layer, label)
    _ = loss(last_layer, label)
    
    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    loss_averages_op = loss_averages.apply(losses + [total_loss])

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name)
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(loss_name +' (raw)', l)
        #tf.scalar_summary(loss_name, loss_averages.average(l))

    with tf.control_dependencies([loss_averages_op]):
        total_loss = tf.identity(total_loss)
    return total_loss


def average_gradients(tower_grads):
  """Calculate the average gradient for each shared variable across all towers.
  Note that this function provides a synchronization point across all towers.
  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over individual gradients. The inner list is over the gradient
      calculation for each tower.
  Returns:
     List of pairs of (gradient, variable) where the gradient has been averaged
     across all towers.
  """
  average_grads = []
  for grad_and_vars in zip(*tower_grads):
    # Note that each grad_and_vars looks like the following:
    #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
    grads = []
    for g, _ in grad_and_vars:
      # Add 0 dimension to the gradients to represent the tower.
      expanded_g = tf.expand_dims(g, 0)

      # Append on a 'tower' dimension which we will average over below.
      grads.append(expanded_g)

    # Average over the 'tower' dimension.
    grad = tf.concat(0, grads)
    grad = tf.reduce_mean(grad, 0)

    # Keep in mind that the Variables are redundant because they are shared
    # across towers. So .. we will just return the first tower's pointer to
    # the Variable.
    v = grad_and_vars[0][1]
    grad_and_var = (grad, v)
    average_grads.append(grad_and_var)
  return average_grads

def time_tensorflow_run(session, target):
    num_steps_burn_in = 80
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
      start_time = time.time()
      _ = session.run(target, feed_dict={x_input:data, y_input:label})
      _, loss_value = session.run(target)
      duration = time.time() - start_time
      if i > num_steps_burn_in:
        if not i % 10:
          num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
          examples_per_sec = num_examples_per_step / duration
          # sec_per_batch = duration / FLAGS.num_gpus
          sec_per_batch = duration
           
          format_str = ('%s: step %d, loss= %.2f (%.1f examples/sec; %.3f '
                      'sec/batch batch_size= %d)')
          print (format_str %
                (datetime.now(), i - num_steps_burn_in, 
                 loss_value, duration, sec_per_batch, num_examples_per_step))

        total_duration += duration
        total_duration_squared += duration * duration

    mn = total_duration / FLAGS.num_batches
    vr = total_duration_squared / FLAGS.num_batches - mn * mn
    sd = math.sqrt(vr)
    print ('%s: FwdBwd across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), FLAGS.num_batches, mn, sd))

def run_benchmark():
  with tf.Graph().as_default(), tf.device('/cpu:0'):
    # Create a variable to count the number of train() calls. This equals the
    # number of batches processed * FLAGS.num_gpus.
    global_step = tf.get_variable(
        'global_step', [],
        initializer=tf.constant_initializer(0), trainable=False)

    # Calculate the learning rate schedule.
    num_batches_per_epoch = (NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                             FLAGS.batch_size)
    decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

    # Create an optimizer that performs gradient descent.
    opt = tf.train.AdamOptimizer(0.001)

    #train_dataset = reader.create_datasets("imdb.pkl", VOCAB_SIZE)

    # Calculate the gradients for each model tower.
    tower_grads = []
    for i in xrange(FLAGS.num_gpus):
      with tf.device('/gpu:%d' % i):
        with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
          # Calculate the loss for one tower of the model. This function
          # constructs the entire model but shares the variables across
          # all towers.
          loss = tower_loss(scope)

          # Reuse variables for the next tower.
          tf.get_variable_scope().reuse_variables()

          # Retain the summaries from the final tower.
          # summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

          # Calculate the gradients for the batch of data on this tower.
          grads = opt.compute_gradients(loss)
          
          # Keep track of the gradients across all towers.
          tower_grads.append(grads)

    # We must calculate the mean of each gradient. Note that this is the
    # synchronization point across all towers.
    grads = average_gradients(tower_grads)

    # Apply the gradients to adjust the shared variables.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Group all updates to into a single train op.
    train_op = tf.group(apply_gradient_op)

    # Build an initialization operation.
    init = tf.initialize_all_variables()

    # Start running operations on the Graph. allow_soft_placement must be set to
    # True to build towers on GPU, as some of the ops do not have GPU
    # implementations.
    sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)
    time_tensorflow_run(sess, [train_op, loss])


def main(_):
  run_benchmark()


if __name__ == '__main__':
  tf.app.run()