faster_rcnn.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
from collections import OrderedDict

21 22
from paddle import fluid

23
from ppdet.experimental import mixed_precision_global_state
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
from ppdet.core.workspace import register

__all__ = ['FasterRCNN']


@register
class FasterRCNN(object):
    """
    Faster R-CNN architecture, see https://arxiv.org/abs/1506.01497
    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
        'fpn'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 roi_extractor,
                 bbox_head='BBoxHead',
                 bbox_assigner='BBoxAssigner',
54
                 rpn_only=False,
55 56 57 58 59 60 61 62
                 fpn=None):
        super(FasterRCNN, self).__init__()
        self.backbone = backbone
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
        self.fpn = fpn
63
        self.rpn_only = rpn_only
64 65

    def build(self, feed_vars, mode='train'):
W
wangguanzhong 已提交
66 67 68 69 70 71
        if mode == 'train':
            required_fields = ['gt_label', 'gt_box', 'is_crowd', 'im_info']
        else:
            required_fields = ['im_shape', 'im_info']
        self._input_check(required_fields, feed_vars)

72 73 74 75 76 77
        im = feed_vars['image']
        im_info = feed_vars['im_info']
        if mode == 'train':
            gt_box = feed_vars['gt_box']
            is_crowd = feed_vars['is_crowd']
        else:
78
            im_shape = feed_vars['im_shape']
79 80 81 82 83 84 85

        mixed_precision_enabled = mixed_precision_global_state() is not None

        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

86 87 88
        body_feats = self.backbone(im)
        body_feat_names = list(body_feats.keys())

89 90 91 92 93
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
            rpn_loss = self.rpn_head.get_loss(im_info, gt_box, is_crowd)
            # sampled rpn proposals
            for var in ['gt_label', 'is_crowd', 'gt_box', 'im_info']:
                assert var in feed_vars, "{} has no {}".format(feed_vars, var)
            outs = self.bbox_assigner(
                rpn_rois=rois,
                gt_classes=feed_vars['gt_label'],
                is_crowd=feed_vars['is_crowd'],
                gt_boxes=feed_vars['gt_box'],
                im_info=feed_vars['im_info'])

            rois = outs[0]
            labels_int32 = outs[1]
            bbox_targets = outs[2]
            bbox_inside_weights = outs[3]
            bbox_outside_weights = outs[4]
116 117
        else:
            if self.rpn_only:
118 119
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
120 121 122
                im_scale = fluid.layers.sequence_expand(im_scale, rois)
                rois = rois / im_scale
                return {'proposal': rois}
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        if self.fpn is None:
            # in models without FPN, roi extractor only uses the last level of
            # feature maps. And body_feat_names[-1] represents the name of
            # last feature map.
            body_feat = body_feats[body_feat_names[-1]]
            roi_feat = self.roi_extractor(body_feat, rois)
        else:
            roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

        if mode == 'train':
            loss = self.bbox_head.get_loss(roi_feat, labels_int32, bbox_targets,
                                           bbox_inside_weights,
                                           bbox_outside_weights)
            loss.update(rpn_loss)
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            pred = self.bbox_head.get_prediction(roi_feat, rois, im_info,
                                                 im_shape)
            return pred

W
wangguanzhong 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    def build_multi_scale(self, feed_vars):
        required_fields = ['image', 'im_info', 'im_shape']
        self._input_check(required_fields, feed_vars)
        ims = []
        for k in feed_vars.keys():
            if 'image' in k:
                ims.append(feed_vars[k])
        result = {}
        result.update(feed_vars)
        for i, im in enumerate(ims):
            im_info = fluid.layers.slice(
                input=feed_vars['im_info'],
                axes=[1],
                starts=[3 * i],
                ends=[3 * i + 3])
            im_shape = feed_vars['im_shape']
            body_feats = self.backbone(im)
            result.update(body_feats)
            body_feat_names = list(body_feats.keys())

            if self.fpn is not None:
                body_feats, spatial_scale = self.fpn.get_output(body_feats)

            rois = self.rpn_head.get_proposals(body_feats, im_info, mode='test')

            if self.fpn is None:
                # in models without FPN, roi extractor only uses the last level of
                # feature maps. And body_feat_names[-1] represents the name of
                # last feature map.
                body_feat = body_feats[body_feat_names[-1]]
                roi_feat = self.roi_extractor(body_feat, rois)
            else:
                roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)

            pred = self.bbox_head.get_prediction(
                roi_feat, rois, im_info, im_shape, return_box_score=True)
            bbox_name = 'bbox_' + str(i)
            score_name = 'score_' + str(i)
            if 'flip' in im.name:
                bbox_name += '_flip'
                score_name += '_flip'
            result[bbox_name] = pred['bbox']
            result[score_name] = pred['score']
        return result

    def _input_check(self, require_fields, feed_vars):
        for var in require_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)

195 196 197
    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

W
wangguanzhong 已提交
198 199 200
    def eval(self, feed_vars, multi_scale=None):
        if multi_scale:
            return self.build_multi_scale(feed_vars)
201 202 203 204
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')