layer.py 15.3 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
D
dangqingqing 已提交
74

Q
qiaolongfei 已提交
75
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
76 77 78
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
79 80

import data_type
L
Luo Tao 已提交
81 82
import activation
import attr
Q
qiaolongfei 已提交
83

Q
qiaolongfei 已提交
84
__all__ = [
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    'parse_network',
    'data',
    'fc',
    'max_id',
    'classification_cost',
    'cross_entropy_cost',
    'cross_entropy_with_selfnorm_cost',
    'regression_cost',
    'multi_binary_label_cross_entropy_cost',
    'rank_cost',
    'lambda_cost',
    'sum_cost',
    'huber_cost'
    'full_matrix_projection',
    'trans_full_matrix_projection',
    'table_projection',
    'identity_projection',
    'scaling_projection',
    'dotmul_projection',
    'context_projection',
    'conv_projection',
Q
qiaolongfei 已提交
106 107
]

Q
qiaolongfei 已提交
108

Q
qiaolongfei 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
124
class Layer(object):
125
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
126
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
127
        self.name = name
Q
qiaolongfei 已提交
128
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
129 130 131 132 133 134

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
135 136
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
137
                              collections.Sequence):
Q
qiaolongfei 已提交
138
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
139 140
                    context=context)
            else:
Q
qiaolongfei 已提交
141 142 143
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
144

145 146 147
        if self.name is None:
            return self.to_proto_impl(**kwargs)

Q
qiaolongfei 已提交
148 149 150 151 152 153 154 155
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


156
def __convert_to_v2__(method_name, name_prefix=None, parent_names=None):
Q
qiaolongfei 已提交
157 158 159 160 161
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
162
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
163 164 165 166
        def __init__(self, name=None, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
167 168
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
169 170 171 172 173

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
174
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
175 176 177 178 179 180 181 182 183 184 185
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
186
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
187

Q
qiaolongfei 已提交
188
    return V2LayerImpl
Q
qiaolongfei 已提交
189 190


Q
qiaolongfei 已提交
191 192 193 194 195 196 197
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
198
    def __init__(self, name, type, **kwargs):
199
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
200

Q
qiaolongfei 已提交
201
        self.type = type
Q
qiaolongfei 已提交
202 203
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
204 205 206 207 208

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
209
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
210 211
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
212 213
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
214 215 216
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
        def __init__(self):
            Exception.__init__(self)

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False

        self.__parent_layers__ = dict()
        other_kwargs = dict()
        self.input_name = 'input'
        self.__parent_layers__[self.input_name] = []
        if input is not None:
            self.__parent_layers__[self.input_name] = input

        self.name = name
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

        Layer.__init__(self, name, self.__parent_layers__)
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
            self.__parent_layers__[self.input_name].append(other)
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
        assert len(self.__parent_layers__[self.input_name]) == 0
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


@wrap_name_default("mixed")
@wrap_act_default(act=conf_helps.LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Q
qiaolongfei 已提交
292
data = DataLayerV2
Q
qiaolongfei 已提交
293 294
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
L
Luo Tao 已提交
295
    'maxid_layer', name_prefix='maxid', parent_names=['input'])
Q
qiaolongfei 已提交
296
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
297 298
    'classification_cost',
    name_prefix='classification_cost',
L
Luo Tao 已提交
299 300 301 302 303
    parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
    'regression_cost',
    name_prefix='regression_cost',
    parent_names=['input', 'label', 'weight'])
Q
qiaolongfei 已提交
304 305 306 307
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
L
Luo Tao 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
    'cross_entropy_with_selfnorm',
    name_prefix='cross_entropy_with_selfnorm',
    parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
    'multi_binary_label_cross_entropy',
    name_prefix='multi_binary_label_cross_entropy',
    parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
    'rank_cost',
    name_prefix='rank_cost',
    parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
    'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
    'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
    'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
Q
qiaolongfei 已提交
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
# convert projection
projection_list = [
    # [V1_method_name], all the parent_names is `input`
    'full_matrix_projection',
    'trans_full_matrix_projection',
    'table_projection',
    'scaling_projection',
    'dotmul_projection',
    'context_projection',
    'conv_projection',
    'identity_projection',
]
for prj in projection_list:
    globals()[prj] = __convert_to_v2__(prj, parent_names=['input'])

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
    globals()[op[0]] = __convert_to_v2__(op[0], parent_names=op[1])
L
Luo Tao 已提交
350

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

def test_projection():
    """
    TODO: move to tests file
    """
    input = data(name='data', type=data_type.dense_vector(784))
    word = data(name='word', type=data_type.integer_value_sequence(10000))
    fc0 = fc(input=input, size=100, act=conf_helps.SigmoidActivation())
    fc1 = fc(input=input, size=200, act=conf_helps.SigmoidActivation())
    mixed0 = mixed(
        size=256,
        input=[
            full_matrix_projection(input=fc0), full_matrix_projection(input=fc1)
        ])
    with mixed(size=200) as mixed1:
        mixed1 += full_matrix_projection(input=fc0)
        mixed1 += identity_projection(input=fc1)

    table = table_projection(input=word)
    emb0 = mixed(size=512, input=table)
    with mixed(size=512) as emb1:
        emb1 += table

    scale = scaling_projection(input=fc0)
    scale0 = mixed(size=100, input=scale)
    with mixed(size=100) as scale1:
        scale1 += scale

    dotmul = dotmul_projection(input=fc0)
    dotmul0 = mixed(size=100, input=dotmul)
    with mixed(size=100) as dotmul1:
        dotmul1 += dotmul

    context = context_projection(input=fc0, context_len=5)
    context0 = mixed(size=100, input=context)
    with mixed(size=100) as context1:
        context1 += context

    conv = conv_projection(
        input=input,
        filter_size=1,
        num_channels=1,
        num_filters=128,
        stride=1,
        padding=0)
    conv0 = mixed(input=conv, bias_attr=True)
    with mixed(bias_attr=True) as conv1:
        conv1 += conv

    print parse_network(mixed0)
    print parse_network(mixed1)
    print parse_network(emb0)
    print parse_network(emb1)
    print parse_network(scale0)
    print parse_network(scale1)
    print parse_network(dotmul0)
    print parse_network(dotmul1)
    print parse_network(conv0)
    print parse_network(conv1)


def test_operator():
    """
    TODO: move to tests file
    """
    ipt0 = data(name='data', type=data_type.dense_vector(784))
    ipt1 = data(name='word', type=data_type.dense_vector(128))
    fc0 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation())
    fc1 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation())

    dotmul_op = dotmul_operator(a=fc0, b=fc1)
    dotmul0 = mixed(input=dotmul_op)
    with mixed() as dotmul1:
        dotmul1 += dotmul_op

    conv = conv_operator(
        img=ipt0,
        filter=ipt1,
        filter_size=1,
        num_channels=1,
        num_filters=128,
        stride=1,
        padding=0)
    conv0 = mixed(input=conv)
    with mixed() as conv1:
        conv1 += conv

    print parse_network(dotmul0)
    print parse_network(dotmul1)
    print parse_network(conv0)
    print parse_network(conv1)


def test_cost(pixel, label, weight, score):
L
Luo Tao 已提交
445 446 447 448 449
    hidden = fc(input=pixel,
                size=100,
                act=activation.Sigmoid(),
                param_attr=attr.Param(name='hidden'))
    inference = fc(input=hidden, size=10, act=activation.Softmax())
Q
qiaolongfei 已提交
450 451
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
L
Luo Tao 已提交
452 453 454 455 456 457 458 459 460 461
    cost2 = classification_cost(input=inference, label=label, weight=weight)
    cost3 = cross_entropy_cost(input=inference, label=label)
    cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
    cost5 = regression_cost(input=inference, label=label)
    cost6 = regression_cost(input=inference, label=label, weight=weight)
    cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
    cost8 = rank_cost(left=score, right=score, label=score)
    cost9 = lambda_cost(input=inference, score=score)
    cost10 = sum_cost(input=inference)
    cost11 = huber_cost(input=score, label=label)
Q
qiaolongfei 已提交
462 463

    print parse_network(cost1, cost2)
L
Luo Tao 已提交
464 465 466
    print parse_network(cost3, cost4)
    print parse_network(cost5, cost6)
    print parse_network(cost7, cost8, cost9, cost10, cost11)
Q
qiaolongfei 已提交
467
    print parse_network(inference, maxid)
468 469 470 471 472 473 474 475 476 477 478


if __name__ == '__main__':
    pixel = data(name='pixel', type=data_type.dense_vector(784))
    label = data(name='label', type=data_type.integer_value(10))
    weight = data(name='weight', type=data_type.dense_vector(10))
    score = data(name='score', type=data_type.dense_vector(1))

    test_cost(pixel, label, weight, score)
    test_projection()
    test_operator()