serving_client.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16 17 18
import glob
import base64
import argparse
19 20 21 22 23 24 25 26 27
from paddle_serving_client import Client
from paddle_serving_client.proto import general_model_config_pb2 as m_config
import google.protobuf.text_format

parser = argparse.ArgumentParser(description="args for paddleserving")
parser.add_argument(
    "--serving_client", type=str, help="the directory of serving_client")
parser.add_argument("--image_dir", type=str)
parser.add_argument("--image_file", type=str)
28
parser.add_argument("--http_port", type=int, default=9997)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
parser.add_argument(
    "--threshold", type=float, default=0.5, help="Threshold of score.")
args = parser.parse_args()


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--image_file or --image_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


65
def postprocess(fetch_dict, fetch_vars, draw_threshold=0.5):
66 67 68 69 70 71
    result = []
    if "conv2d_441.tmp_1" in fetch_dict:
        heatmap = fetch_dict["conv2d_441.tmp_1"]
        print(heatmap)
        result.append(heatmap)
    else:
72
        bboxes = fetch_dict[fetch_vars[0]]
73 74 75 76 77
        for bbox in bboxes:
            if bbox[0] > -1 and bbox[1] > draw_threshold:
                print(f"{int(bbox[0])} {bbox[1]} "
                      f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
                result.append(f"{int(bbox[0])} {bbox[1]} "
78
                              f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
79
    return result
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108


def get_model_vars(client_config_dir):
    # read original serving_client_conf.prototxt
    client_config_file = os.path.join(client_config_dir,
                                      "serving_client_conf.prototxt")
    with open(client_config_file, 'r') as f:
        model_var = google.protobuf.text_format.Merge(
            str(f.read()), m_config.GeneralModelConfig())
    # modify feed_var to run core/general-server/op/
    [model_var.feed_var.pop() for _ in range(len(model_var.feed_var))]
    feed_var = m_config.FeedVar()
    feed_var.name = "input"
    feed_var.alias_name = "input"
    feed_var.is_lod_tensor = False
    feed_var.feed_type = 20
    feed_var.shape.extend([1])
    model_var.feed_var.extend([feed_var])
    with open(
            os.path.join(client_config_dir, "serving_client_conf_cpp.prototxt"),
            "w") as f:
        f.write(str(model_var))
    # get feed_vars/fetch_vars
    feed_vars = [var.name for var in model_var.feed_var]
    fetch_vars = [var.name for var in model_var.fetch_var]
    return feed_vars, fetch_vars


if __name__ == '__main__':
109
    url = f"127.0.0.1:{args.http_port}"
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    logid = 10000
    img_list = get_test_images(args.image_dir, args.image_file)
    feed_vars, fetch_vars = get_model_vars(args.serving_client)

    client = Client()
    client.load_client_config(
        os.path.join(args.serving_client, "serving_client_conf_cpp.prototxt"))
    client.connect([url])

    for img_file in img_list:
        with open(img_file, 'rb') as file:
            image_data = file.read()
        image = base64.b64encode(image_data).decode('utf8')
        fetch_dict = client.predict(
            feed={feed_vars[0]: image}, fetch=fetch_vars)
125
        result = postprocess(fetch_dict, fetch_vars, args.threshold)