parallel_executor.cc 5.6 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
Q
qiaolongfei 已提交
18
#include <vector>
Y
Yu Yang 已提交
19

Q
qiaolongfei 已提交
20
#include "paddle/fluid/framework/threadpool.h"
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
23
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
24
#endif
Y
Yang Yang 已提交
25

Y
Yu Yang 已提交
26 27 28
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"

Y
Yang Yang 已提交
29
namespace paddle {
Y
Yu Yang 已提交
30 31
namespace framework {

Y
Yu Yang 已提交
32 33 34
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
35
      : places_(places) {}
Y
Yu Yang 已提交
36 37 38 39

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
40
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
41

Y
Yu Yang 已提交
42
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
43
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
44
#endif
Y
Yu Yang 已提交
45 46
};

Y
Yu Yang 已提交
47
ParallelExecutor::ParallelExecutor(
48 49
    size_t num_threads, bool use_event,
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
50 51 52
    const std::unordered_set<std::string> &params,
    const ProgramDesc &startup_program, const ProgramDesc &main_program,
    const std::string &loss_var_name, Scope *scope)
Y
Yu Yang 已提交
53
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
54
  member_->global_scope_ = scope;
Y
Yu Yang 已提交
55

Y
Yu Yang 已提交
56 57 58 59
  // Step 1. RunStartupProgram and Bcast the params to devs.
  Executor exe(places[0]);
  exe.Run(startup_program, scope, 0);
  // Create local scopes
Y
Yu Yang 已提交
60 61
  for (size_t i = 0; i < member_->places_.size(); ++i) {
    member_->local_scopes_.push_back(&scope->NewScope());
Y
Yu Yang 已提交
62 63
  }

Y
Yu Yang 已提交
64 65 66 67
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
  member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
#endif
Y
Yu Yang 已提交
68
  if (platform::is_gpu_place(places[0]) &&
Y
Yu Yang 已提交
69 70
      member_->local_scopes_.size() != 1) {  // Is CUDA
    BCastParamsToGPUs(startup_program);
Y
Yu Yang 已提交
71
  }
Y
Yu Yang 已提交
72
// Startup Program has been run. All local scopes has correct parameters.
Y
Yu Yang 已提交
73

Y
Yu Yang 已提交
74 75 76
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
77 78 79
  details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
                                           params, member_->local_scopes_,
                                           member_->nccl_ctxs_.get());
Y
Yu Yang 已提交
80 81 82 83
#else
  details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
                                           params, member_->local_scopes_);
#endif
Y
Yu Yang 已提交
84
  auto graph = builder.Build(main_program);
Y
Yu Yang 已提交
85

Y
Yu Yang 已提交
86
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
87 88
      num_threads, use_event, member_->local_scopes_, places,
      std::move(graph)));
Y
Yu Yang 已提交
89

Y
Yu Yang 已提交
90
  // Step 3. Create vars in each scope;
Y
Yu Yang 已提交
91
  for (auto *scope : member_->local_scopes_) {
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99
    for (auto *var : main_program.Block(0).AllVars()) {
      if (scope->FindVar(var->Name()) != nullptr) {
        continue;
      }

      InitializeVariable(scope->Var(var->Name()), var->GetType());
    }
  }
Y
Yu Yang 已提交
100 101 102 103
}

void ParallelExecutor::BCastParamsToGPUs(
    const ProgramDesc &startup_program) const {
Y
Yu Yang 已提交
104
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
105
  auto *main_scope = member_->local_scopes_[0];
Y
Yu Yang 已提交
106

Y
Yu Yang 已提交
107
  for (auto *var_desc : startup_program.Block(0).AllVars()) {
C
chengduoZH 已提交
108 109
    size_t idx = var_desc->Name().find("@GRAD");
    if (idx != std::string::npos) continue;
Y
Yu Yang 已提交
110 111 112 113
    if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
      auto &main_tensor =
          main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();

C
chengduoZH 已提交
114
      auto &dims = main_tensor.dims();
Y
Yu Yang 已提交
115

C
chengduoZH 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      if (paddle::platform::is_gpu_place(main_tensor.place())) {
        size_t numel = main_tensor.numel();
        ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto place = member_->places_[i];
          void *buffer;
          if (i == 0) {
            buffer = const_cast<void *>(main_tensor.data<void>());
          } else {
            auto local_scope = member_->local_scopes_[i];
            auto *t =
                local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
            t->Resize(dims);
            buffer = t->mutable_data(place, main_tensor.type());
          }
          auto &nccl_ctx = member_->nccl_ctxs_->at(place);
          platform::dynload::ncclBcast(buffer, numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
        }
      } else {
        platform::CPUPlace cpu;
        for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Yu Yang 已提交
139
          auto local_scope = member_->local_scopes_[i];
Y
Update  
Yu Yang 已提交
140 141
          auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
          t->Resize(dims);
C
chengduoZH 已提交
142 143
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Update  
Yu Yang 已提交
144
        }
Y
Yu Yang 已提交
145
      }
Y
Stash  
Yu Yang 已提交
146
    }
Y
Yu Yang 已提交
147
    member_->nccl_ctxs_->WaitAll();
Y
Stash  
Yu Yang 已提交
148
  }
Y
Yu Yang 已提交
149 150 151 152
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
153

Y
Yu Yang 已提交
154 155
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
156 157 158
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
159
}
Y
Yu Yang 已提交
160

Y
Yu Yang 已提交
161
}  // namespace framework
Y
Yang Yang 已提交
162
}  // namespace paddle