centernet_head.py 6.9 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
W
wangguanzhong 已提交
19
from paddle.nn.initializer import Constant, Uniform
F
FlyingQianMM 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
from ppdet.core.workspace import register
from ppdet.modeling.losses import CTFocalLoss


class ConvLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=False):
        super(ConvLayer, self).__init__()
        bias_attr = False
        fan_in = ch_in * kernel_size**2
        bound = 1 / math.sqrt(fan_in)
W
wangguanzhong 已提交
38
        param_attr = paddle.ParamAttr(initializer=Uniform(-bound, bound))
F
FlyingQianMM 已提交
39
        if bias:
W
wangguanzhong 已提交
40
            bias_attr = paddle.ParamAttr(initializer=Constant(0.))
F
FlyingQianMM 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        self.conv = nn.Conv2D(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            weight_attr=param_attr,
            bias_attr=bias_attr)

    def forward(self, inputs):
        out = self.conv(inputs)

        return out


@register
class CenterNetHead(nn.Layer):
    """
    Args:
        in_channels (int): the channel number of input to CenterNetHead.
        num_classes (int): the number of classes, 80 by default.
        head_planes (int): the channel number in all head, 256 by default.
        heatmap_weight (float): the weight of heatmap loss, 1 by default.
        regress_ltrb (bool): whether to regress left/top/right/bottom or
            width/height for a box, true by default
        size_weight (float): the weight of box size loss, 0.1 by default.
        offset_weight (float): the weight of center offset loss, 1 by default.

    """

    __shared__ = ['num_classes']

    def __init__(self,
                 in_channels,
                 num_classes=80,
                 head_planes=256,
                 heatmap_weight=1,
                 regress_ltrb=True,
                 size_weight=0.1,
                 offset_weight=1):
        super(CenterNetHead, self).__init__()
        self.weights = {
            'heatmap': heatmap_weight,
            'size': size_weight,
            'offset': offset_weight
        }
        self.heatmap = nn.Sequential(
            ConvLayer(
                in_channels, head_planes, kernel_size=3, padding=1, bias=True),
            nn.ReLU(),
            ConvLayer(
                head_planes,
                num_classes,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=True))
100 101
        with paddle.no_grad():
            self.heatmap[2].conv.bias[:] = -2.19
F
FlyingQianMM 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        self.size = nn.Sequential(
            ConvLayer(
                in_channels, head_planes, kernel_size=3, padding=1, bias=True),
            nn.ReLU(),
            ConvLayer(
                head_planes,
                4 if regress_ltrb else 2,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=True))
        self.offset = nn.Sequential(
            ConvLayer(
                in_channels, head_planes, kernel_size=3, padding=1, bias=True),
            nn.ReLU(),
            ConvLayer(
                head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True))
        self.focal_loss = CTFocalLoss()

    @classmethod
    def from_config(cls, cfg, input_shape):
        if isinstance(input_shape, (list, tuple)):
            input_shape = input_shape[0]
        return {'in_channels': input_shape.channels}

    def forward(self, feat, inputs):
        heatmap = self.heatmap(feat)
        size = self.size(feat)
        offset = self.offset(feat)
        if self.training:
            loss = self.get_loss(heatmap, size, offset, self.weights, inputs)
            return loss
        else:
            heatmap = F.sigmoid(heatmap)
            return {'heatmap': heatmap, 'size': size, 'offset': offset}

    def get_loss(self, heatmap, size, offset, weights, inputs):
        heatmap_target = inputs['heatmap']
        size_target = inputs['size']
        offset_target = inputs['offset']
        index = inputs['index']
        mask = inputs['index_mask']
        heatmap = paddle.clip(F.sigmoid(heatmap), 1e-4, 1 - 1e-4)
        heatmap_loss = self.focal_loss(heatmap, heatmap_target)

        size = paddle.transpose(size, perm=[0, 2, 3, 1])
        size_n, size_h, size_w, size_c = size.shape
        size = paddle.reshape(size, shape=[size_n, -1, size_c])
        index = paddle.unsqueeze(index, 2)
        batch_inds = list()
        for i in range(size_n):
            batch_ind = paddle.full(
                shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
            batch_inds.append(batch_ind)
        batch_inds = paddle.concat(batch_inds, axis=0)
        index = paddle.concat(x=[batch_inds, index], axis=2)
        pos_size = paddle.gather_nd(size, index=index)
        mask = paddle.unsqueeze(mask, axis=2)
        size_mask = paddle.expand_as(mask, pos_size)
        size_mask = paddle.cast(size_mask, dtype=pos_size.dtype)
        pos_num = size_mask.sum()
        size_mask.stop_gradient = True
        size_target.stop_gradient = True
        size_loss = F.l1_loss(
            pos_size * size_mask, size_target * size_mask, reduction='sum')
        size_loss = size_loss / (pos_num + 1e-4)

        offset = paddle.transpose(offset, perm=[0, 2, 3, 1])
        offset_n, offset_h, offset_w, offset_c = offset.shape
        offset = paddle.reshape(offset, shape=[offset_n, -1, offset_c])
        pos_offset = paddle.gather_nd(offset, index=index)
        offset_mask = paddle.expand_as(mask, pos_offset)
        offset_mask = paddle.cast(offset_mask, dtype=pos_offset.dtype)
        pos_num = offset_mask.sum()
        offset_mask.stop_gradient = True
        offset_target.stop_gradient = True
        offset_loss = F.l1_loss(
            pos_offset * offset_mask,
            offset_target * offset_mask,
            reduction='sum')
        offset_loss = offset_loss / (pos_num + 1e-4)

        det_loss = weights['heatmap'] * heatmap_loss + weights[
            'size'] * size_loss + weights['offset'] * offset_loss

        return {
            'det_loss': det_loss,
            'heatmap_loss': heatmap_loss,
            'size_loss': size_loss,
            'offset_loss': offset_loss
        }