conv_mkldnn_op.cc 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28 29 30 31
using conv_bwd_data = mkldnn::convolution_backward_data;
using conv_bwd_weights = mkldnn::convolution_backward_weights;
using conv_fwd = mkldnn::convolution_forward;
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32
template <typename T>
33
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
34 35 36 37 38
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

39 40 41 42
    // Get unique name for index
    const std::string key = ctx.op().Output("Output");
    const std::string key_conv_pd = key + "@conv_pd";

43 44
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
45 46 47 48 49 50
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

51 52 53 54 55 56
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    // TODO(pzelazko-intel) add support for group convolution and dilation
    PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory = memory(
        {{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
        to_void_cast(input_data));
    auto user_weights_memory =
        memory({{{weights_tz}, memory::data_type::f32, filter->format()},
                mkldnn_engine},
               to_void_cast(filter_data));

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
    auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
                                          memory::format::any);
    auto weights_md = platform::MKLDNNMemDesc(
        weights_tz, memory::data_type::f32, memory::format::any);
    auto dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
                                          memory::format::any);

    // create a conv primitive descriptor and save it for usage in backward
    std::shared_ptr<conv_fwd::primitive_desc> conv_pd = ConvFwdPrimitiveDesc(
        src_md, weights_md, dst_md, strides, paddings, mkldnn_engine);

    // create reorder primitive if the input format is not the preferred one
    auto src_memory = user_src_memory;
    primitive reorder_src;
    bool is_src_reordered = false;
    if (memory::primitive_desc(conv_pd->src_primitive_desc()) !=
        user_src_memory.get_primitive_desc()) {
      src_memory = memory(conv_pd->src_primitive_desc());
      reorder_src = reorder(user_src_memory, src_memory);
      is_src_reordered = true;
    }
    auto weights_memory = user_weights_memory;
    primitive reorder_weights;
    bool is_weights_reordered = false;
    if (memory::primitive_desc(conv_pd->weights_primitive_desc()) !=
        user_weights_memory.get_primitive_desc()) {
      weights_memory = memory(conv_pd->weights_primitive_desc());
      reorder_weights = reorder(user_weights_memory, weights_memory);
      is_weights_reordered = true;
    }

    // create memory primitive for conv dst
    auto dst_memory = memory(conv_pd->dst_primitive_desc(), output_data);
129 130

    // create convolution op primitive
131
    auto conv_prim = conv_fwd(*conv_pd, src_memory, weights_memory, dst_memory);
132 133

    // push primitive to stream and wait until it's executed
134 135 136 137 138 139 140 141 142 143 144
    std::vector<primitive> pipeline;
    if (is_src_reordered) pipeline.push_back(reorder_src);
    if (is_weights_reordered) pipeline.push_back(reorder_weights);
    pipeline.push_back(conv_prim);
    stream(stream::kind::eager).submit(pipeline).wait();

    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);

    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(dst_memory));
145
  }
146

147
 private:
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  std::unique_ptr<conv_fwd::primitive_desc> ConvFwdPrimitiveDesc(
      const memory::desc& src, const memory::desc& weights,
      const memory::desc& dst, const std::vector<int>& strides,
      const std::vector<int>& paddings, const mkldnn::engine& engine) const {
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto conv_desc =
        conv_fwd::desc(mkldnn::prop_kind::forward, mkldnn::convolution_direct,
                       src, weights, dst, stride_dims, padding_dims,
                       padding_dims, mkldnn::padding_kind::zero);

    auto p_conv_pd = new conv_fwd::primitive_desc(conv_desc, engine);

    return std::unique_ptr<conv_fwd::primitive_desc>(p_conv_pd);
163 164 165 166
  }
};

template <typename T>
167
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
168 169 170 171 172
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

173 174
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
175 176 177 178 179 180 181 182 183 184
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

185 186 187 188 189 190 191 192 193 194 195 196 197
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    if (!input_grad && !filter_grad) return;

    // Get an unique name from "argument" name of "Output" variable
    // This name will be used as key when saving info into device context
    const std::string key = ctx.op().Input("Output");
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    if (input_grad) {
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    // create mkldnn memory from input tensors (input/weights/output_grad)
    auto user_src_memory = memory(
        {{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
        to_void_cast(input_data));
    auto user_weights_memory =
        memory({{{weights_tz}, memory::data_type::f32, filter->format()},
                mkldnn_engine},
               to_void_cast(filter_data));
    auto user_diff_dst_memory =
        memory({{{dst_tz}, memory::data_type::f32, output_grad->format()},
                mkldnn_engine},
               to_void_cast(output_grad_data));

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
    auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
                                          memory::format::any);
    auto diff_src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
                                               memory::format::any);
    auto weights_md = platform::MKLDNNMemDesc(
        weights_tz, memory::data_type::f32, memory::format::any);
    auto diff_weights_md = platform::MKLDNNMemDesc(
        weights_tz, memory::data_type::f32, memory::format::any);
    auto diff_dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
                                               memory::format::any);

254
    // Retrieve conv_pd from device context
255 256
    auto conv_pd = std::static_pointer_cast<conv_fwd::primitive_desc>(
        dev_ctx.GetBlob(key_conv_pd));
257 258 259 260 261
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

    // create backward conv primitive for weights
    if (filter_grad) {
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      // create backward convolution primitive descriptor
      auto conv_bwd_weights_desc = conv_bwd_weights::desc(
          mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
          strides, paddings, paddings, mkldnn::padding_kind::zero);
      auto conv_bwd_weights_pd = conv_bwd_weights::primitive_desc(
          conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

      // create reorder primitive if the input format is not the preferred one
      auto src_memory = user_src_memory;
      primitive reorder_src;
      bool is_src_reordered = false;
      if (memory::primitive_desc(conv_bwd_weights_pd.src_primitive_desc()) !=
          user_src_memory.get_primitive_desc()) {
        src_memory = memory(conv_bwd_weights_pd.src_primitive_desc());
        reorder_src = reorder(user_src_memory, src_memory);
        is_src_reordered = true;
      }

      auto diff_dst_memory_4filter = user_diff_dst_memory;
      primitive reorder_diff_dst_4filter;
      bool is_diff_dst_reordered_4filter = false;
      if (memory::primitive_desc(
              conv_bwd_weights_pd.diff_dst_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory_4filter =
            memory(conv_bwd_weights_pd.diff_dst_primitive_desc());
        reorder_diff_dst_4filter =
            reorder(user_diff_dst_memory, diff_dst_memory_4filter);
        is_diff_dst_reordered_4filter = true;
      }

      // create mkldnn memory for output (i.e. diff weights)
294
      auto diff_weights_memory =
295 296
          memory(conv_bwd_weights_pd.diff_weights_primitive_desc(),
                 reinterpret_cast<void*>(filter_grad_data));
297 298

      // create backward conv primitive for weights
299 300 301
      auto conv_bwd_weights_prim =
          conv_bwd_weights(conv_bwd_weights_pd, src_memory,
                           diff_dst_memory_4filter, diff_weights_memory);
302 303

      // push primitive and execute it
304 305 306 307 308 309 310 311 312
      std::vector<primitive> pipeline;
      if (is_src_reordered) pipeline.push_back(reorder_src);
      if (is_diff_dst_reordered_4filter)
        pipeline.push_back(reorder_diff_dst_4filter);
      pipeline.push_back(conv_bwd_weights_prim);
      stream(stream::kind::eager).submit(pipeline).wait();

      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(diff_weights_memory));
313 314 315
    }

    if (input_grad) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
      // create backward convolution primitive descriptor
      auto conv_bwd_data_desc = conv_bwd_data::desc(
          mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
          strides, paddings, paddings, mkldnn::padding_kind::zero);
      auto conv_bwd_data_pd = conv_bwd_data::primitive_desc(
          conv_bwd_data_desc, mkldnn_engine, *conv_pd);

      // create reorder primitive if the input format is not the preferred one
      auto weights_memory = user_weights_memory;
      primitive reorder_weights;
      bool is_weights_reordered = false;
      if (memory::primitive_desc(conv_bwd_data_pd.weights_primitive_desc()) !=
          user_weights_memory.get_primitive_desc()) {
        weights_memory = memory(conv_bwd_data_pd.weights_primitive_desc());
        reorder_weights = reorder(user_weights_memory, weights_memory);
        is_weights_reordered = true;
      }

      auto diff_dst_memory_4data = user_diff_dst_memory;
      primitive reorder_diff_dst_4data;
      bool is_diff_dst_reordered_4data = false;
      if (memory::primitive_desc(conv_bwd_data_pd.diff_dst_primitive_desc()) !=
          user_diff_dst_memory.get_primitive_desc()) {
        diff_dst_memory_4data =
            memory(conv_bwd_data_pd.diff_dst_primitive_desc());
        reorder_diff_dst_4data =
            reorder(user_diff_dst_memory, diff_dst_memory_4data);
        is_diff_dst_reordered_4data = true;
      }

      // create mkldnn memory for output (i.e. diff src)
      auto diff_src_memory = memory(conv_bwd_data_pd.diff_src_primitive_desc(),
                                    reinterpret_cast<void*>(input_grad_data));
349 350

      // create backward conv primitive for data
351 352 353
      auto conv_bwd_data_prim =
          conv_bwd_data(conv_bwd_data_pd, diff_dst_memory_4data, weights_memory,
                        diff_src_memory);
354

355 356 357 358 359 360 361 362 363 364
      // push primitive and execute it
      std::vector<primitive> pipeline;
      if (is_weights_reordered) pipeline.push_back(reorder_weights);
      if (is_diff_dst_reordered_4data)
        pipeline.push_back(reorder_diff_dst_4data);
      pipeline.push_back(conv_bwd_data_prim);
      stream(stream::kind::eager).submit(pipeline).wait();

      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(diff_src_memory));
365 366 367 368 369 370 371 372 373 374
    }
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
375
                   ops::ConvMKLDNNOpKernel<float>);
376 377

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
378
                   ops::ConvMKLDNNGradOpKernel<float>);