HierarchicalSigmoidLayer.cpp 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "HierarchicalSigmoidLayer.h"
16
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

namespace paddle {

REGISTER_LAYER(hsigmoid, HierarchicalSigmoidLayer);

bool HierarchicalSigmoidLayer::init(const LayerMap& layerMap,
                                    const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK(config_.has_num_classes()) << "num_classes must be specifed in config";
  numClasses_ = config_.num_classes();
  CHECK_GE(numClasses_, (size_t)2);
  codeLength_ = findLastSet(numClasses_ - 1);

  size_t height = numClasses_ - 1;

  /* initialize the weightList */
  // The last input layer is for label
  CHECK(!parameters_.back());
  for (size_t i = 0; i < inputLayers_.size() - 1; i++) {
    size_t width = inputLayers_[i]->getSize();
    // create a new weight
    CHECK_EQ(parameters_[i]->getSize(), width * height);
    Weight* w = new Weight(height, width, parameters_[i]);

    // append the new weight to the list
    weights_.emplace_back(w);
  }

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    CHECK_EQ(biasParameter_->getSize(), numClasses_ - 1);
    biases_.reset(new Weight(1, numClasses_ - 1, biasParameter_));
  }

  return true;
}

void HierarchicalSigmoidLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = getInputValue(0)->getHeight();
  int size = getSize();
  reserveOutput(batchSize, size);
63 64 65 66
  Matrix::resizeOrCreate(preOutput_.value,
                         batchSize,
                         codeLength_,
                         /* trans */ false,
67
                         false);
68 69 70 71
  Matrix::resizeOrCreate(preOutput_.grad,
                         batchSize,
                         codeLength_,
                         /* trans */ false,
72
                         false);
Z
zhangjinchao01 已提交
73 74 75
  IVectorPtr label = getInput(*getLabelLayer()).ids;
  preOutput_.value->zeroMem();

76 77
  if (useGpu_) {
    Matrix::resizeOrCreate(cpuOutput_,
78 79 80 81
                           output_.value->getHeight(),
                           output_.value->getWidth(),
                           /* trans */ false,
                           false);
82 83 84 85 86 87 88
    IVector::resizeOrCreate(cpuLabel_, label->getSize(), false);
    cpuLabel_->copyFrom(*label);
    cpuOutput_->copyFrom(*output_.value);
  } else {
    cpuOutput_ = output_.value;
    cpuLabel_ = label;
  }
Z
zhangjinchao01 已提交
89 90
  /* add the bias-vector */
  if (biases_.get() != NULL) {
91 92
    if (useGpu_) {
      Matrix::resizeOrCreate(cpuBias_,
93 94 95 96
                             1,
                             numClasses_ - 1,
                             /* trans */ false,
                             false);
97 98 99 100 101
      cpuBias_->copyFrom(*biases_->getW());
    } else {
      cpuBias_ = biases_->getW();
    }
    preOutput_.value->addByBitCode(numClasses_, *cpuLabel_, *cpuBias_);
Z
zhangjinchao01 已提交
102 103 104
  }
  for (size_t i = 0; i < inputLayers_.size() - 1; ++i) {
    MatrixPtr input = getInputValue(i);
105 106
    if (useGpu_) {
      Matrix::resizeOrCreate(cpuInput_,
107 108 109 110
                             input->getHeight(),
                             input->getWidth(),
                             /* trans */ false,
                             false);
111
      Matrix::resizeOrCreate(cpuWeight_,
112 113 114 115
                             weights_[i]->getW()->getHeight(),
                             weights_[i]->getW()->getWidth(),
                             /* trans */ false,
                             false);
116 117 118 119 120 121
      cpuInput_->copyFrom(*input);
      cpuWeight_->copyFrom(*weights_[i]->getW());
    } else {
      cpuInput_ = input;
      cpuWeight_ = weights_[i]->getW();
    }
122
    preOutput_.value->mulByBitCode(
123
        numClasses_, *cpuLabel_, *cpuWeight_, *cpuInput_);
Z
zhangjinchao01 已提交
124 125 126
  }
  // keep consistent with the clipping in the following softrelu
  preOutput_.value->clip(-40.0, 40.0);
127
  preOutput_.value->sumByBitCode(numClasses_,
128 129
                                 *cpuLabel_,
                                 *cpuOutput_,
Z
zhangjinchao01 已提交
130 131
                                 -1);  // scaleSum
  preOutput_.value->softrelu(*preOutput_.value);
132
  MatrixPtr sum = Matrix::create(batchSize, 1, /* trans= */ false, false);
Z
zhangjinchao01 已提交
133
  preOutput_.value->rowSum(*sum);
134 135 136 137 138 139
  cpuOutput_->add(*sum);
  if (useGpu_) {
    output_.value->copyFrom(*cpuOutput_);
  } else {
    output_.value = cpuOutput_;
  }
Z
zhangjinchao01 已提交
140 141 142 143
}

void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
  IVectorPtr label = getInput(*getLabelLayer()).ids;
144 145 146 147 148 149
  if (useGpu_) {
    IVector::resizeOrCreate(cpuLabel_, label->getSize(), false);
    cpuLabel_->copyFrom(*label);
  } else {
    cpuLabel_ = label;
  }
Z
zhangjinchao01 已提交
150 151
  preOutput_.grad->one();
  preOutput_.grad->softreluDerivative(*preOutput_.value);
152
  preOutput_.grad->subByBitCode(numClasses_, *cpuLabel_);
Z
zhangjinchao01 已提交
153 154

  if (biases_ && biases_->getWGrad()) {
155 156 157
    MatrixPtr biases_grad = biases_->getWGrad();
    if (useGpu_) {
      Matrix::resizeOrCreate(cpuBias_,
158 159 160 161
                             1,
                             numClasses_ - 1,
                             /* trans */ false,
                             false);
162 163 164 165
      cpuBias_->copyFrom(*biases_grad);
    } else {
      cpuBias_ = biases_grad;
    }
166
    preOutput_.grad->addByBitCodeBackward(numClasses_, *cpuLabel_, *cpuBias_);
167 168 169 170 171
    if (useGpu) {
      biases_grad->copyFrom(*cpuBias_);
    } else {
      biases_grad = cpuBias_;
    }
Z
zhangjinchao01 已提交
172 173 174 175 176 177 178 179
    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i < inputLayers_.size() - 1; ++i) {
    /* Calculate the W-gradient for the current layer */
    MatrixPtr input = getInputValue(i);
    if (weights_[i]->getWGrad()) {
180 181 182
      MatrixPtr weights_grad = weights_[i]->getWGrad();
      if (useGpu_) {
        Matrix::resizeOrCreate(cpuInput_,
183 184 185 186
                               input->getHeight(),
                               input->getWidth(),
                               /* trans */ false,
                               false);
187
        Matrix::resizeOrCreate(cpuWeightGrad_,
188 189 190 191
                               weights_grad->getHeight(),
                               weights_grad->getWidth(),
                               /* trans */ false,
                               false);
192 193 194 195 196 197
        cpuInput_->copyFrom(*input);
        cpuWeightGrad_->copyFrom(*weights_grad);
      } else {
        cpuInput_ = input;
        cpuWeightGrad_ = weights_grad;
      }
Z
zhangjinchao01 已提交
198
      preOutput_.grad->mulByBitCodeBackwardWeight(
199 200 201 202 203 204
          numClasses_, *cpuLabel_, *cpuWeightGrad_, *cpuInput_);
      if (useGpu_) {
        weights_grad->copyFrom(*cpuWeightGrad_);
      } else {
        weights_grad = cpuWeightGrad_;
      }
Z
zhangjinchao01 已提交
205 206 207 208 209 210 211
      /* Increasing the number of gradient */
      weights_[i]->getParameterPtr()->incUpdate(callback);
    }

    /* Calculate the input layers error */
    MatrixPtr inputGrad = getInputGrad(i);
    if (inputGrad) {
212 213
      if (useGpu_) {
        Matrix::resizeOrCreate(cpuInputGrad_,
214 215 216 217
                               inputGrad->getHeight(),
                               inputGrad->getWidth(),
                               /* trans */ false,
                               false);
218
        Matrix::resizeOrCreate(cpuWeight_,
219 220 221 222
                               weights_[i]->getW()->getHeight(),
                               weights_[i]->getW()->getWidth(),
                               /* trans */ false,
                               false);
223 224 225 226 227 228
        cpuInputGrad_->copyFrom(*inputGrad);
        cpuWeight_->copyFrom(*weights_[i]->getW());
      } else {
        cpuInputGrad_ = inputGrad;
        cpuWeight_ = weights_[i]->getW();
      }
Z
zhangjinchao01 已提交
229
      preOutput_.grad->mulByBitCodeBackwardError(
230 231 232 233 234 235
          numClasses_, *cpuLabel_, *cpuWeight_, *cpuInputGrad_);
      if (useGpu_) {
        inputGrad->copyFrom(*cpuInputGrad_);
      } else {
        inputGrad = cpuInputGrad_;
      }
Z
zhangjinchao01 已提交
236 237 238 239 240
    }
  }
}

}  // namespace paddle