fluid_benchmark.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import cProfile
import time
import os

import numpy as np

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
import paddle.fluid.transpiler.distribute_transpiler as distribute_transpiler

BENCHMARK_MODELS = [
    "machine_translation", "resnet", "vgg", "mnist", "stacked_dynamic_lstm"
]


def parse_args():
    parser = argparse.ArgumentParser('Fluid model benchmarks.')
    parser.add_argument(
        '--model',
        type=str,
        choices=BENCHMARK_MODELS,
        default='resnet',
        help='The model to run benchmark with.')
    parser.add_argument(
        '--batch_size', type=int, default=32, help='The minibatch size.')
    parser.add_argument(
L
Luo Tao 已提交
43
        '--learning_rate', type=float, default=0.001, help='The learning rate.')
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    # TODO(wuyi): add "--use_fake_data" option back.
    parser.add_argument(
        '--skip_batch_num',
        type=int,
        default=5,
        help='The first num of minibatch num to skip, for better performance test'
    )
    parser.add_argument(
        '--iterations', type=int, default=80, help='The number of minibatches.')
    parser.add_argument(
        '--pass_num', type=int, default=100, help='The number of passes.')
    parser.add_argument(
        '--data_format',
        type=str,
        default='NCHW',
        choices=['NCHW', 'NHWC'],
        help='The data data_format, now only support NCHW.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type.')
    parser.add_argument(
        '--gpus',
        type=int,
        default=1,
        help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
72 73 74 75 76
    parser.add_argument(
        '--cpus',
        type=int,
        default=1,
        help='If cpus > 1, will use ParallelDo to run, else use Executor.')
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    parser.add_argument(
        '--data_set',
        type=str,
        default='flowers',
        choices=['cifar10', 'flowers'],
        help='Optional dataset for benchmark.')
    parser.add_argument(
        '--infer_only', action='store_true', help='If set, run forward only.')
    parser.add_argument(
        '--use_cprof', action='store_true', help='If set, use cProfile.')
    parser.add_argument(
        '--use_nvprof',
        action='store_true',
        help='If set, use nvprof for CUDA.')
    parser.add_argument(
        '--no_test',
L
Luo Tao 已提交
93 94
        action='store_true',
        help='If set, do not test the testset during training.')
95 96 97 98
    parser.add_argument(
        '--memory_optimize',
        action='store_true',
        help='If set, optimize runtime memory before start.')
99 100 101 102
    parser.add_argument(
        '--use_fake_data',
        action='store_true',
        help='If set ommit the actual read data operators.')
X
Xin Pan 已提交
103 104
    parser.add_argument(
        '--profile', action='store_true', help='If set, profile a few steps.')
105 106 107 108 109 110 111 112 113 114
    parser.add_argument(
        '--update_method',
        type=str,
        default='local',
        choices=['local', 'pserver', 'nccl2'],
        help='Choose parameter update method, can be local, pserver, nccl2.')
    args = parser.parse_args()
    return args


X
Xin Pan 已提交
115 116
def append_nccl2_prepare(trainer_id):
    if trainer_id >= 0:
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        # append gen_nccl_id at the end of startup program
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        port = os.getenv("PADDLE_PSERVER_PORT")
        worker_ips = os.getenv("PADDLE_TRAINER_IPS")
        worker_endpoints = []
        for ip in worker_ips.split(","):
            worker_endpoints.append(':'.join([ip, port]))
        num_trainers = len(worker_endpoints)
        current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
        worker_endpoints.remove(current_endpoint)

        nccl_id_var = fluid.default_startup_program().global_block().create_var(
            name="NCCLID",
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)
        fluid.default_startup_program().global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
                "endpoint": current_endpoint,
                "endpoint_list": worker_endpoints,
                "trainer_id": trainer_id
            })
        return nccl_id_var, num_trainers, trainer_id
    else:
X
Xin Pan 已提交
143 144
        raise Exception("must set positive PADDLE_TRAINER_ID env variables for "
                        "nccl-based dist train.")
145 146


X
Xin Pan 已提交
147 148
def dist_transpile(trainer_id):
    if trainer_id < 0:
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        return None, None

    # the port of all pservers, needed by both trainer and pserver
    port = os.getenv("PADDLE_PSERVER_PORT", "6174")
    # comma separated ips of all pservers, needed by trainer and
    # pserver
    pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
    eplist = []
    for ip in pserver_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)
    # total number of workers/trainers in the job, needed by
    # trainer and pserver
    trainers = int(os.getenv("PADDLE_TRAINERS"))
    # the IP of the local machine, needed by pserver only
    current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
    # the role, should be either PSERVER or TRAINER
    training_role = os.getenv("PADDLE_TRAINING_ROLE")

    t = distribute_transpiler.DistributeTranspiler()
    t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(current_endpoint)
        pserver_startup_program = t.get_startup_program(current_endpoint,
                                                        pserver_program)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, fluid.default_startup_program()
    else:
        raise ValueError(
            'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
        )


def test(exe, inference_program, test_reader, feeder, batch_acc):
    accuracy_evaluator = fluid.metrics.Accuracy()
    for batch_id, data in enumerate(test_reader()):
        acc = exe.run(inference_program,
                      feed=feeder.feed(data),
                      fetch_list=[batch_acc])
        accuracy_evaluator.update(value=np.array(acc), weight=len(data))

    return accuracy_evaluator.eval()


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
          args, train_prog, startup_prog):
    if os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
        place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(train_prog)
        return

206 207 208 209
    if args.use_fake_data:
        raise Exception(
            "fake data is not supported in single GPU test for now.")

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(startup_prog)
    feed_var_list = [
        var for var in train_prog.global_block().vars.itervalues()
        if var.is_data
    ]
    feeder = fluid.DataFeeder(feed_var_list, place)

    iters, num_samples, start_time = 0, 0, time.time()
    for pass_id in range(args.pass_num):
        train_losses = []
        for batch_id, data in enumerate(train_reader()):
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
            loss = exe.run(train_prog,
                           feed=feeder.feed(data),
                           fetch_list=[avg_loss])
            iters += 1
            num_samples += len(data)
            train_losses.append(loss)
            print("Pass: %d, Iter: %d, Loss: %f\n" %
                  (pass_id, iters, np.mean(train_losses)))
L
Luo Tao 已提交
236
        print_train_time(start_time, time.time(), num_samples)
L
Luo Tao 已提交
237
        print("Pass: %d, Loss: %f" % (pass_id, np.mean(train_losses))),
238
        # evaluation
L
Luo Tao 已提交
239
        if not args.no_test and batch_acc:
240 241 242 243 244 245 246 247 248 249 250 251 252
            pass_test_acc = test(exe, infer_prog, test_reader, feeder,
                                 batch_acc)
            print(", Test Accuracy: %f" % pass_test_acc)
        print("\n")
        # TODO(wuyi): add warmup passes to get better perf data.
        exit(0)


# TODO(wuyi): replace train, train_parallel, test functions with new trainer
# API once it is ready.
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
                   batch_acc, args, train_prog, startup_prog, nccl_id_var,
                   num_trainers, trainer_id):
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    feed_var_list = [
        var for var in train_prog.global_block().vars.itervalues()
        if var.is_data
    ]
    # generate fake:
    if args.use_fake_data:
        for var in feed_var_list:
            v = startup_prog.global_block().clone_variable(var)
            var.persistable = True
            v.persistable = True

            real_shape = list(var.shape)
            real_shape[0] = args.batch_size / args.gpus
            startup_prog.global_block().append_op(
                outputs={"Out": v},
                type="fill_constant",
                attrs={"shape": real_shape,
                       "value": 1.0,
                       "dtype": var.dtype})

273
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
274 275 276 277
    if nccl_id_var and trainer_id == 0:
        #FIXME(wuyi): wait other trainer to start listening
        time.sleep(30)

278 279 280 281 282 283 284 285 286 287 288
    startup_exe = fluid.Executor(place)
    startup_exe.run(startup_prog)
    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1
    strategy.allow_op_delay = False
    exe = fluid.ParallelExecutor(
        True,
        avg_loss.name,
        exec_strategy=strategy,
        num_trainers=num_trainers,
        trainer_id=trainer_id)
289

290 291 292 293 294 295
    feeder = fluid.DataFeeder(feed_var_list, place)
    for pass_id in range(args.pass_num):
        num_samples = 0
        iters = 0
        start_time = time.time()
        for batch_id, data in enumerate(train_reader()):
X
Xin Pan 已提交
296 297 298 299 300
            if args.profile and pass_id == 0 and batch_id == 5:
                profiler.start_profiler("All")
            elif args.profile and pass_id == 0 and batch_id == 10:
                profiler.stop_profiler("total", "/tmp/profile_%d" % trainer_id)

301 302 303 304 305
            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            if iters == args.iterations:
                break
306 307 308 309
            if args.use_fake_data:
                loss, = exe.run([avg_loss.name])
            else:
                loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
310 311 312 313 314 315 316
            if args.update_method == "pserver":
                exe.bcast_params()
            num_samples += len(data)
            iters += 1
            if batch_id % 1 == 0:
                print("Pass %d, batch %d, loss %s" %
                      (pass_id, batch_id, np.array(loss)))
L
Luo Tao 已提交
317
        print_train_time(start_time, time.time(), num_samples)
L
Luo Tao 已提交
318
        if not args.no_test and batch_acc:
319 320 321 322 323 324 325 326 327
            test_acc = test(startup_exe, infer_prog, test_reader, feeder,
                            batch_acc)
            print("Pass: %d, Test Accuracy: %f\n" % (pass_id, test_acc))
        exit(0)


def print_arguments(args):
    vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
                                vars(args)['device'] == 'GPU')
L
Luo Tao 已提交
328
    print('----------- Configuration Arguments -----------')
329 330 331 332 333
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


L
Luo Tao 已提交
334 335 336 337 338 339 340
def print_train_time(start_time, end_time, num_samples):
    train_elapsed = end_time - start_time
    examples_per_sec = num_samples / train_elapsed
    print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
          (num_samples, train_elapsed, examples_per_sec))


341 342 343
def main():
    args = parse_args()
    print_arguments(args)
X
Xin Pan 已提交
344 345 346 347

    # the unique trainer id, starting from 0, needed by trainer
    # only
    nccl_id_var, num_trainers, trainer_id = (
L
Luo Tao 已提交
348
        None, 1, int(os.getenv("PADDLE_TRAINER_ID", "0")))
349 350 351 352 353 354 355 356 357 358 359 360 361

    if args.use_cprof:
        pr = cProfile.Profile()
        pr.enable()
    model_def = __import__("models.%s" % args.model, fromlist=["models"])
    train_args = list(model_def.get_model(args))
    train_args.append(args)
    # Run optimizer.minimize(avg_loss)
    train_args[2].minimize(train_args[0])
    if args.memory_optimize:
        fluid.memory_optimize(fluid.default_main_program())

    if args.update_method == "pserver":
X
Xin Pan 已提交
362
        train_prog, startup_prog = dist_transpile(trainer_id)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        if not train_prog:
            raise Exception(
                "Must configure correct environments to run dist train.")
        train_args.extend([train_prog, startup_prog])
        if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER":
            train_args.extend([nccl_id_var, num_trainers, trainer_id])
            train_parallel(*train_args)
        train(*train_args)
        exit(0)

    # for other update methods, use default programs
    train_args.append(fluid.default_main_program())
    train_args.append(fluid.default_startup_program())

    if args.update_method == "nccl2":
X
Xin Pan 已提交
378
        nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare(trainer_id)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    if args.gpus == 1:
        # NOTE: parallel executor use profiler interanlly
        if args.use_nvprof and args.device == 'GPU':
            with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
                train(*train_args)
        else:
            train(*train_args)
    else:
        if args.device == "CPU":
            raise Exception("Only support GPU perf with parallel exe")
        train_args.extend([nccl_id_var, num_trainers, trainer_id])
        train_parallel(*train_args)


if __name__ == "__main__":
    main()