bifpn.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.initializer import Constant, Xavier

from ppdet.core.workspace import register

__all__ = ['BiFPN']


class FusionConv(object):
    def __init__(self, num_chan):
        super(FusionConv, self).__init__()
        self.num_chan = num_chan

    def __call__(self, inputs, name=''):
        x = fluid.layers.swish(inputs)
        # depthwise
        x = fluid.layers.conv2d(
            x,
            self.num_chan,
            filter_size=3,
            padding='SAME',
            groups=self.num_chan,
            param_attr=ParamAttr(
                initializer=Xavier(), name=name + '_dw_w'),
44
            bias_attr=False)
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        # pointwise
        x = fluid.layers.conv2d(
            x,
            self.num_chan,
            filter_size=1,
            param_attr=ParamAttr(
                initializer=Xavier(), name=name + '_pw_w'),
            bias_attr=ParamAttr(
                regularizer=L2Decay(0.), name=name + '_pw_b'))
        # bn + act
        x = fluid.layers.batch_norm(
            x,
            momentum=0.997,
            epsilon=1e-04,
            param_attr=ParamAttr(
                initializer=Constant(1.0),
                regularizer=L2Decay(0.),
                name=name + '_bn_w'),
            bias_attr=ParamAttr(
                regularizer=L2Decay(0.), name=name + '_bn_b'))
        return x


class BiFPNCell(object):
69
    def __init__(self, num_chan, levels=5, inputs_layer_num=3):
70 71 72
        super(BiFPNCell, self).__init__()
        self.levels = levels
        self.num_chan = num_chan
73 74
        num_trigates = levels - 2
        num_bigates = levels
75
        self.inputs_layer_num = inputs_layer_num
76
        self.trigates = fluid.layers.create_parameter(
77
            shape=[num_trigates, 3],
78 79 80
            dtype='float32',
            default_initializer=fluid.initializer.Constant(1.))
        self.bigates = fluid.layers.create_parameter(
81
            shape=[num_bigates, 2],
82 83 84 85
            dtype='float32',
            default_initializer=fluid.initializer.Constant(1.))
        self.eps = 1e-4

86
    def __call__(self, inputs, cell_name='', is_first_time=False, p4_2_p5_2=[]):
87
        assert len(inputs) == self.levels
88
        assert ((is_first_time) and (len(p4_2_p5_2) != 0)) or ((not is_first_time) and (len(p4_2_p5_2) == 0))
89 90 91 92 93

        def upsample(feat):
            return fluid.layers.resize_nearest(feat, scale=2.)

        def downsample(feat):
94 95 96 97 98 99
            return fluid.layers.pool2d(
                feat,
                pool_type='max',
                pool_size=3,
                pool_stride=2,
                pool_padding='SAME')
100 101 102

        fuse_conv = FusionConv(self.num_chan)

103
        # normalize weight
104 105
        trigates = fluid.layers.relu(self.trigates)
        bigates = fluid.layers.relu(self.bigates)
106 107 108 109
        trigates /= fluid.layers.reduce_sum(
            trigates, dim=1, keep_dim=True) + self.eps
        bigates /= fluid.layers.reduce_sum(
            bigates, dim=1, keep_dim=True) + self.eps
110

111
        feature_maps = list(inputs)  # make a copy        # top down path
112 113
        for l in range(self.levels - 1):
            p = self.levels - l - 2
114 115 116 117 118 119 120 121
            w1 = fluid.layers.slice(
                bigates, axes=[0, 1], starts=[l, 0], ends=[l + 1, 1])
            w2 = fluid.layers.slice(
                bigates, axes=[0, 1], starts=[l, 1], ends=[l + 1, 2])
            above = upsample(feature_maps[p + 1])
            feature_maps[p] = fuse_conv(
                w1 * above + w2 * inputs[p],
                name='{}_tb_{}'.format(cell_name, l))
122 123 124 125 126 127 128
        # bottom up path
        for l in range(1, self.levels):
            p = l
            name = '{}_bt_{}'.format(cell_name, l)
            below = downsample(feature_maps[p - 1])
            if p == self.levels - 1:
                # handle P7
129 130 131 132 133 134
                w1 = fluid.layers.slice(
                    bigates, axes=[0, 1], starts=[p, 0], ends=[p + 1, 1])
                w2 = fluid.layers.slice(
                    bigates, axes=[0, 1], starts=[p, 1], ends=[p + 1, 2])
                feature_maps[p] = fuse_conv(
                    w1 * below + w2 * inputs[p], name=name)
135
            else:
136 137
                if is_first_time:
                    if p < self.inputs_layer_num:
138 139 140 141
                        w1 = fluid.layers.slice(
                            trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
                        w2 = fluid.layers.slice(
                            trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
142
                        w3 = fluid.layers.slice(trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
143 144
                        feature_maps[p] = fuse_conv(
                            w1 * feature_maps[p] + w2 * below + w3 * p4_2_p5_2[p - 1], name=name)
145
                    else:  # For P6"
146 147 148 149 150 151 152 153
                        w1 = fluid.layers.slice(
                            trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
                        w2 = fluid.layers.slice(
                            trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
                        w3 = fluid.layers.slice(
                            trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
                        feature_maps[p] = fuse_conv(
                            w1 * feature_maps[p] + w2 * below + w3 * inputs[p], name=name)
154
                else:
155 156 157 158 159 160 161 162
                    w1 = fluid.layers.slice(
                        trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
                    w2 = fluid.layers.slice(
                        trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
                    w3 = fluid.layers.slice(
                        trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
                    feature_maps[p] = fuse_conv(
                        w1 * feature_maps[p] + w2 * below + w3 * inputs[p], name=name)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        return feature_maps


@register
class BiFPN(object):
    """
    Bidirectional Feature Pyramid Network, see https://arxiv.org/abs/1911.09070

    Args:
        num_chan (int): number of feature channels
        repeat (int): number of repeats of the BiFPN module
        level (int): number of FPN levels, default: 5
    """

    def __init__(self, num_chan, repeat=3, levels=5):
        super(BiFPN, self).__init__()
        self.num_chan = num_chan
        self.repeat = repeat
        self.levels = levels

    def __call__(self, inputs):
        feats = []
185
        # NOTE add two extra levels
186 187 188 189 190 191 192 193 194 195 196
        for idx in range(len(inputs)):
            if inputs[idx].shape[1] != self.num_chan:
                feat = fluid.layers.conv2d(
                    inputs[idx],
                    self.num_chan,
                    filter_size=1,
                    padding='SAME',
                    param_attr=ParamAttr(initializer=Xavier()),
                    bias_attr=ParamAttr(regularizer=L2Decay(0.)),
                    name='resample_conv_{}'.format(idx))
                feat = fluid.layers.batch_norm(
197
                    feat,
198 199
                    momentum=0.997,
                    epsilon=1e-04,
200 201
                    param_attr=ParamAttr(
                        initializer=Constant(1.0), regularizer=L2Decay(0.)),
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
                    bias_attr=ParamAttr(regularizer=L2Decay(0.)),
                    name='resample_bn_{}'.format(idx))
            else:
                feat = inputs[idx]
            feats.append(feat)
        # Build additional input features that are not from backbone.
        # P_7 layer we just use pool2d without conv layer & bn, for the same channel with P_6.
        # https://github.com/google/automl/blob/master/efficientdet/keras/efficientdet_keras.py#L820
        for idx in range(len(inputs), self.levels):
            if feats[-1].shape[1] != self.num_chan:
                feat = fluid.layers.conv2d(
                    feats[-1],
                    self.num_chan,
                    filter_size=1,
                    padding='SAME',
                    param_attr=ParamAttr(initializer=Xavier()),
                    bias_attr=ParamAttr(regularizer=L2Decay(0.)),
                    name='resample_conv_{}'.format(idx))
                feat = fluid.layers.batch_norm(
                    feat,
                    momentum=0.997,
                    epsilon=1e-04,
                    param_attr=ParamAttr(initializer=Constant(1.0), regularizer=L2Decay(0.)),
                    bias_attr=ParamAttr(regularizer=L2Decay(0.)),
                    name='resample_bn_{}'.format(idx))
            feat = fluid.layers.pool2d(
                feat,
                pool_type='max',
                pool_size=3,
                pool_stride=2,
                pool_padding='SAME',
                name='resample_downsample_{}'.format(idx))
234
            feats.append(feat)
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        # Handle the p4_2 and p5_2 with another 1x1 conv & bn layer
        p4_2_p5_2 = []
        for idx in range(1, len(inputs)):
            feat = fluid.layers.conv2d(
                inputs[idx],
                self.num_chan,
                filter_size=1,
                padding='SAME',
                param_attr=ParamAttr(initializer=Xavier()),
                bias_attr=ParamAttr(regularizer=L2Decay(0.)),
                name='resample2_conv_{}'.format(idx))
            feat = fluid.layers.batch_norm(
                feat,
                momentum=0.997,
                epsilon=1e-04,
                param_attr=ParamAttr(initializer=Constant(1.0), regularizer=L2Decay(0.)),
                bias_attr=ParamAttr(regularizer=L2Decay(0.)),
                name='resample2_bn_{}'.format(idx))
            p4_2_p5_2.append(feat)
254

255
        biFPN = BiFPNCell(self.num_chan, self.levels, len(inputs))
256
        for r in range(self.repeat):
257 258 259 260 261
            if r == 0:
                feats = biFPN(feats, cell_name='bifpn_{}'.format(r), is_first_time=True, p4_2_p5_2=p4_2_p5_2)
            else:
                feats = biFPN(feats, cell_name='bifpn_{}'.format(r))

262
        return feats