analyzer_resnet50_tester.cc 3.4 KB
Newer Older
T
Tao Luo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

T
Tao Luo 已提交
23
void SetConfig(AnalysisConfig *cfg) {
T
Tao Luo 已提交
24 25 26 27 28 29
  cfg->param_file = FLAGS_infer_model + "/params";
  cfg->prog_file = FLAGS_infer_model + "/model";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->enable_ir_optim = true;
  cfg->specify_input_name = true;
M
Michal Gallus 已提交
30 31 32
#ifdef PADDLE_WITH_MKLDNN
  cfg->_use_mkldnn = true;
#endif
T
Tao Luo 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");

  PaddleTensor input;
  // channel=3, height/width=318
  std::vector<int> shape({FLAGS_batch_size, 3, 318, 318});
  input.shape = shape;
  input.dtype = PaddleDType::FLOAT32;

  // fill input data, for profile easily, do not use random data here.
  size_t size = FLAGS_batch_size * 3 * 318 * 318;
  input.data.Resize(size * sizeof(float));
  float *input_data = static_cast<float *>(input.data.data());
  for (size_t i = 0; i < size; i++) {
    *(input_data + i) = static_cast<float>(i) / size;
  }

  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}

// Easy for profiling independently.
T
Tao Luo 已提交
58
void profile(bool use_mkldnn = false) {
T
Tao Luo 已提交
59 60
  AnalysisConfig cfg;
  SetConfig(&cfg);
T
Tao Luo 已提交
61
  cfg._use_mkldnn = use_mkldnn;
T
Tao Luo 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
    size_t size = GetSize(outputs[0]);
    // output is a 512-dimension feature
    EXPECT_EQ(size, 512 * FLAGS_batch_size);
  }
}

T
Tao Luo 已提交
76 77 78 79 80
TEST(Analyzer_resnet50, profile) { profile(); }
#ifndef PADDLE_WITH_MKLDNN
TEST(Analyzer_resnet50, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

T
Tao Luo 已提交
81 82 83 84 85
// Check the fuse status
TEST(Analyzer_resnet50, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
T
Tao Luo 已提交
86 87 88 89 90
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
T
Tao Luo 已提交
91 92 93
}

// Compare result of NativeConfig and AnalysisConfig
T
Tao Luo 已提交
94
void compare(bool use_mkldnn = false) {
T
Tao Luo 已提交
95 96
  AnalysisConfig cfg;
  SetConfig(&cfg);
T
Tao Luo 已提交
97
  cfg._use_mkldnn = use_mkldnn;
T
Tao Luo 已提交
98 99 100 101

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(cfg, input_slots_all);
T
Tao Luo 已提交
102 103
}

T
Tao Luo 已提交
104
TEST(Analyzer_resnet50, compare) { compare(); }
T
Tao Luo 已提交
105
#ifdef PADDLE_WITH_MKLDNN
T
Tao Luo 已提交
106
TEST(Analyzer_resnet50, compare_mkldnn) { compare(true /* use_mkldnn */); }
T
Tao Luo 已提交
107
#endif
T
Tao Luo 已提交
108 109 110 111

}  // namespace analysis
}  // namespace inference
}  // namespace paddle