coco.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np

from .dataset import DataSet
from ppdet.core.workspace import register, serializable

import logging
logger = logging.getLogger(__name__)


@register
@serializable
class COCODataSet(DataSet):
    """
    Load COCO records with annotations in json file 'anno_path'

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): json file path.
        sample_num (int): number of samples to load, -1 means all.
        with_background (bool): whether load background as a class.
            if True, total class number will be 81. default True.
    """

    def __init__(self,
                 image_dir=None,
                 anno_path=None,
                 dataset_dir=None,
                 sample_num=-1,
                 with_background=True):
        super(COCODataSet, self).__init__(
            image_dir=image_dir,
            anno_path=anno_path,
            dataset_dir=dataset_dir,
            sample_num=sample_num,
            with_background=with_background)
        self.anno_path = anno_path
        self.sample_num = sample_num
        self.with_background = with_background
        # `roidbs` is list of dict whose structure is:
        # {
        #     'im_file': im_fname, # image file name
        #     'im_id': img_id, # image id
        #     'h': im_h, # height of image
        #     'w': im_w, # width
        #     'is_crowd': is_crowd,
        #     'gt_score': gt_score,
        #     'gt_class': gt_class,
        #     'gt_bbox': gt_bbox,
        #     'gt_poly': gt_poly,
        # }
        self.roidbs = None
        # a dict used to map category name to class id
        self.cname2cid = None
W
wangguanzhong 已提交
70
        self.load_image_only = False
71 72 73 74 75 76 77

    def load_roidb_and_cname2cid(self):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
W
wangguanzhong 已提交
78
        from pycocotools.coco import COCO
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
        cat_ids = coco.getCatIds()
        records = []
        ct = 0

        # when with_background = True, mapping category to classid, like:
        #   background:0, first_class:1, second_class:2, ...
        catid2clsid = dict({
            catid: i + int(self.with_background)
            for i, catid in enumerate(cat_ids)
        })
        cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in catid2clsid.items()
        })

W
wangguanzhong 已提交
96 97 98 99 100
        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warn('Annotation file: {} does not contains ground truth '
                        'and load image information only.'.format(anno_path))

101 102 103 104 105 106 107 108
        for img_id in img_ids:
            img_anno = coco.loadImgs(img_id)[0]
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_fname = os.path.join(image_dir,
                                    im_fname) if image_dir else im_fname
W
wangguanzhong 已提交
109

110 111 112 113 114 115 116
            coco_rec = {
                'im_file': im_fname,
                'im_id': np.array([img_id]),
                'h': im_h,
                'w': im_w,
            }

W
wangguanzhong 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
            if not self.load_image_only:
                ins_anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
                for inst in instances:
                    x, y, box_w, box_h = inst['bbox']
                    x1 = max(0, x)
                    y1 = max(0, y)
                    x2 = min(im_w - 1, x1 + max(0, box_w - 1))
                    y2 = min(im_h - 1, y1 + max(0, box_h - 1))
                    if inst['area'] > 0 and x2 >= x1 and y2 >= y1:
                        inst['clean_bbox'] = [x1, y1, x2, y2]
                        bboxes.append(inst)
                    else:
                        logger.warn(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))
                num_bbox = len(bboxes)

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_score = np.ones((num_bbox, 1), dtype=np.float32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                difficult = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox

                for i, box in enumerate(bboxes):
                    catid = box['category_id']
                    gt_class[i][0] = catid2clsid[catid]
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    if 'segmentation' in box:
                        gt_poly[i] = box['segmentation']

                coco_rec.update({
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_score': gt_score,
                    'gt_poly': gt_poly,
                })

161 162 163 164 165 166 167
            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_fname, img_id, im_h, im_w))
            records.append(coco_rec)
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert len(records) > 0, 'not found any coco record in %s' % (anno_path)
Y
Yang Zhang 已提交
168
        logger.debug('{} samples in file {}'.format(ct, anno_path))
169
        self.roidbs, self.cname2cid = records, cname2cid