utils.py 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
#
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
S
shangliang Xu 已提交
17 18
# Modified from detrex (https://github.com/IDEA-Research/detrex)
# Copyright 2022 The IDEA Authors. All rights reserved.
19 20 21 22 23 24

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
S
shangliang Xu 已提交
25
import math
26 27 28 29 30 31 32 33
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ..bbox_utils import bbox_overlaps

__all__ = [
    '_get_clones', 'bbox_overlaps', 'bbox_cxcywh_to_xyxy',
34 35
    'bbox_xyxy_to_cxcywh', 'sigmoid_focal_loss', 'inverse_sigmoid',
    'deformable_attention_core_func'
36 37 38 39 40 41 42 43
]


def _get_clones(module, N):
    return nn.LayerList([copy.deepcopy(module) for _ in range(N)])


def bbox_cxcywh_to_xyxy(x):
44 45
    cxcy, wh = paddle.split(x, 2, axis=-1)
    return paddle.concat([cxcy - 0.5 * wh, cxcy + 0.5 * wh], axis=-1)
46 47 48


def bbox_xyxy_to_cxcywh(x):
49 50 51
    x1, y1, x2, y2 = x.split(4, axis=-1)
    return paddle.concat(
        [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)], axis=-1)
52 53 54 55 56 57 58 59 60 61 62


def sigmoid_focal_loss(logit, label, normalizer=1.0, alpha=0.25, gamma=2.0):
    prob = F.sigmoid(logit)
    ce_loss = F.binary_cross_entropy_with_logits(logit, label, reduction="none")
    p_t = prob * label + (1 - prob) * (1 - label)
    loss = ce_loss * ((1 - p_t)**gamma)

    if alpha >= 0:
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = alpha_t * loss
S
shangliang Xu 已提交
63
    return loss.mean(1).sum() / normalizer
64 65 66 67 68 69 70 71


def inverse_sigmoid(x, eps=1e-6):
    x = x.clip(min=0., max=1.)
    return paddle.log(x / (1 - x + eps) + eps)


def deformable_attention_core_func(value, value_spatial_shapes,
72 73
                                   value_level_start_index, sampling_locations,
                                   attention_weights):
74 75 76 77
    """
    Args:
        value (Tensor): [bs, value_length, n_head, c]
        value_spatial_shapes (Tensor): [n_levels, 2]
78
        value_level_start_index (Tensor): [n_levels]
79 80 81 82 83 84
        sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2]
        attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points]

    Returns:
        output (Tensor): [bs, Length_{query}, C]
    """
85 86
    bs, _, n_head, c = value.shape
    _, Len_q, _, n_levels, n_points, _ = sampling_locations.shape
87

88 89
    value_list = value.split(
        value_spatial_shapes.prod(1).split(n_levels), axis=1)
90 91
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
92
    for level, (h, w) in enumerate(value_spatial_shapes):
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
        value_l_ = value_list[level].flatten(2).transpose(
            [0, 2, 1]).reshape([bs * n_head, c, h, w])
        # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
        sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(
            [0, 2, 1, 3, 4]).flatten(0, 1)
        # N_*M_, D_, Lq_, P_
        sampling_value_l_ = F.grid_sample(
            value_l_,
            sampling_grid_l_,
            mode='bilinear',
            padding_mode='zeros',
            align_corners=False)
        sampling_value_list.append(sampling_value_l_)
    # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_)
    attention_weights = attention_weights.transpose([0, 2, 1, 3, 4]).reshape(
        [bs * n_head, 1, Len_q, n_levels * n_points])
    output = (paddle.stack(
        sampling_value_list, axis=-2).flatten(-2) *
              attention_weights).sum(-1).reshape([bs, n_head * c, Len_q])

    return output.transpose([0, 2, 1])
115 116 117 118 119 120 121 122


def get_valid_ratio(mask):
    _, H, W = paddle.shape(mask)
    valid_ratio_h = paddle.sum(mask[:, :, 0], 1) / H
    valid_ratio_w = paddle.sum(mask[:, 0, :], 1) / W
    # [b, 2]
    return paddle.stack([valid_ratio_w, valid_ratio_h], -1)
S
shangliang Xu 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265


def get_contrastive_denoising_training_group(targets,
                                             num_classes,
                                             num_queries,
                                             class_embed,
                                             num_denoising=100,
                                             label_noise_ratio=0.5,
                                             box_noise_scale=1.0):
    if num_denoising <= 0:
        return None, None, None, None
    num_gts = [len(t) for t in targets["gt_class"]]
    max_gt_num = max(num_gts)
    if max_gt_num == 0:
        return None, None, None, None

    num_group = num_denoising // max_gt_num
    num_group = 1 if num_group == 0 else num_group
    # pad gt to max_num of a batch
    bs = len(targets["gt_class"])
    input_query_class = paddle.full(
        [bs, max_gt_num], num_classes, dtype='int32')
    input_query_bbox = paddle.zeros([bs, max_gt_num, 4])
    pad_gt_mask = paddle.zeros([bs, max_gt_num])
    for i in range(bs):
        num_gt = num_gts[i]
        if num_gt > 0:
            input_query_class[i, :num_gt] = targets["gt_class"][i].squeeze(-1)
            input_query_bbox[i, :num_gt] = targets["gt_bbox"][i]
            pad_gt_mask[i, :num_gt] = 1
    # each group has positive and negative queries.
    input_query_class = input_query_class.tile([1, 2 * num_group])
    input_query_bbox = input_query_bbox.tile([1, 2 * num_group, 1])
    pad_gt_mask = pad_gt_mask.tile([1, 2 * num_group])
    # positive and negative mask
    negative_gt_mask = paddle.zeros([bs, max_gt_num * 2, 1])
    negative_gt_mask[:, max_gt_num:] = 1
    negative_gt_mask = negative_gt_mask.tile([1, num_group, 1])
    positive_gt_mask = 1 - negative_gt_mask
    # contrastive denoising training positive index
    positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
    dn_positive_idx = paddle.nonzero(positive_gt_mask)[:, 1]
    dn_positive_idx = paddle.split(dn_positive_idx,
                                   [n * num_group for n in num_gts])
    # total denoising queries
    num_denoising = int(max_gt_num * 2 * num_group)

    if label_noise_ratio > 0:
        input_query_class = input_query_class.flatten()
        pad_gt_mask = pad_gt_mask.flatten()
        # half of bbox prob
        mask = paddle.rand(input_query_class.shape) < (label_noise_ratio * 0.5)
        chosen_idx = paddle.nonzero(mask * pad_gt_mask).squeeze(-1)
        # randomly put a new one here
        new_label = paddle.randint_like(
            chosen_idx, 0, num_classes, dtype=input_query_class.dtype)
        input_query_class.scatter_(chosen_idx, new_label)
        input_query_class.reshape_([bs, num_denoising])
        pad_gt_mask.reshape_([bs, num_denoising])

    if box_noise_scale > 0:
        known_bbox = bbox_cxcywh_to_xyxy(input_query_bbox)

        diff = paddle.tile(input_query_bbox[..., 2:] * 0.5,
                           [1, 1, 2]) * box_noise_scale

        rand_sign = paddle.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
        rand_part = paddle.rand(input_query_bbox.shape)
        rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (
            1 - negative_gt_mask)
        rand_part *= rand_sign
        known_bbox += rand_part * diff
        known_bbox.clip_(min=0.0, max=1.0)
        input_query_bbox = bbox_xyxy_to_cxcywh(known_bbox)
        input_query_bbox.clip_(min=0.0, max=1.0)

    class_embed = paddle.concat(
        [class_embed, paddle.zeros([1, class_embed.shape[-1]])])
    input_query_class = paddle.gather(
        class_embed, input_query_class.flatten(),
        axis=0).reshape([bs, num_denoising, -1])

    tgt_size = num_denoising + num_queries
    attn_mask = paddle.ones([tgt_size, tgt_size]) < 0
    # match query cannot see the reconstruct
    attn_mask[num_denoising:, :num_denoising] = True
    # reconstruct cannot see each other
    for i in range(num_group):
        if i == 0:
            attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), max_gt_num *
                      2 * (i + 1):num_denoising] = True
        if i == num_group - 1:
            attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), :max_gt_num *
                      i * 2] = True
        else:
            attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), max_gt_num *
                      2 * (i + 1):num_denoising] = True
            attn_mask[max_gt_num * 2 * i:max_gt_num * 2 * (i + 1), :max_gt_num *
                      2 * i] = True
    attn_mask = ~attn_mask
    dn_meta = {
        "dn_positive_idx": dn_positive_idx,
        "dn_num_group": num_group,
        "dn_num_split": [num_denoising, num_queries]
    }

    return input_query_class, input_query_bbox, attn_mask, dn_meta


def get_sine_pos_embed(pos_tensor,
                       num_pos_feats=128,
                       temperature=10000,
                       exchange_xy=True):
    """generate sine position embedding from a position tensor

    Args:
        pos_tensor (torch.Tensor): Shape as `(None, n)`.
        num_pos_feats (int): projected shape for each float in the tensor. Default: 128
        temperature (int): The temperature used for scaling
            the position embedding. Default: 10000.
        exchange_xy (bool, optional): exchange pos x and pos y. \
            For example, input tensor is `[x, y]`, the results will  # noqa
            be `[pos(y), pos(x)]`. Defaults: True.

    Returns:
        torch.Tensor: Returned position embedding  # noqa
        with shape `(None, n * num_pos_feats)`.
    """
    scale = 2. * math.pi
    dim_t = 2. * paddle.floor_divide(
        paddle.arange(num_pos_feats), paddle.to_tensor(2))
    dim_t = scale / temperature**(dim_t / num_pos_feats)

    def sine_func(x):
        x *= dim_t
        return paddle.stack(
            (x[:, :, 0::2].sin(), x[:, :, 1::2].cos()), axis=3).flatten(2)

    pos_res = [sine_func(x) for x in pos_tensor.split(pos_tensor.shape[-1], -1)]
    if exchange_xy:
        pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
    pos_res = paddle.concat(pos_res, axis=2)
    return pos_res