onehot_cross_entropy_op.cu 4.2 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/op_registry.h"
C
caoying03 已提交
16
#include "paddle/operators/math/utils.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/platform/assert.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
                                   const int N, const int D) {
  // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
  // CUDA_1D_KERNEL_LOOP(i, N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
C
caoying03 已提交
32
    Y[i] = -math::tolerable_value(log(X[i * D + label[i]]));
33 34 35
  }
}

36
// TODO(qingqing): make zero setting an common function.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
template <typename T>
__global__ void zero(T* X, const int N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    X[i] = 0.0;
  }
}

template <typename T>
__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
                                           const int* label, const int N,
                                           const int D) {
  // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
  // CUDA_1D_KERNEL_LOOP(i, N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    int idx = i * D + label[i];
    dX[idx] = -dY[i] / X[idx];
  }
}

template <typename T>
class OnehotCrossEntropyOpCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
C
caoying03 已提交
63
                   "This kernel only runs on GPU device.");
64 65 66 67 68 69 70 71 72 73 74 75

    auto X = ctx.Input<Tensor>("X");
    const T* Xdata = X->data<T>();
    const int* label_data = ctx.Input<Tensor>("label")->data<int>();
    auto Y = ctx.Output<Tensor>("Y");
    Y->mutable_data<T>(ctx.GetPlace());
    T* Ydata = Y->data<T>();

    int N = X->dims()[0];
    int D = X->dims()[1];
    int block = 512;
    int grid = (N + block - 1) / block;
C
caoying03 已提交
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    // TODO(qingqing) launch kernel on specified stream
    // base on ExecutionContext.
    CrossEntropyKernel<T><<<grid, block>>>(Ydata, Xdata, label_data, N, D);
  }
};

template <typename T>
class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");

    auto X = ctx.Input<Tensor>("X");
    auto dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dY = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto label = ctx.Input<Tensor>("label");

    auto* dXdata = dX->template mutable_data<T>(ctx.GetPlace());
    auto* dYdata = dY->template data<T>();
    auto* Xdata = X->template data<T>();
    auto* label_data = label->data<int>();

    int N = X->dims()[0];
    int D = X->dims()[1];
    int block = 512;
    int grid = (N * D + block - 1) / block;
    zero<T><<<grid, block>>>(dXdata, N * D);

    grid = (N + block - 1) / block;
    // TODO(qingqing): launch kernel on specified stream
    // base on ExecutionContext.
    CrossEntropyGradientKernel<T><<<grid, block>>>(dXdata, dYdata, Xdata,
                                                   label_data, N, D);
  }
};

}  // namespace operators
}  // namespace paddle
Q
Qiao Longfei 已提交
116

D
dongzhihong 已提交
117
namespace ops = paddle::operators;
118 119 120 121
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy,
                       ops::OnehotCrossEntropyOpCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(onehot_cross_entropy_grad,
                       ops::OnehotCrossEntropyGradientOpCUDAKernel<float>);