operator.cc 27.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/framework/operator.h"
15
#include <algorithm>
16 17 18 19 20
#include <sstream>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
23
#include "paddle/fluid/framework/lod_tensor.h"
24
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
27
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
C
chengduoZH 已提交
30 31 32
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
33

Q
Qiao Longfei 已提交
34 35 36
namespace paddle {
namespace framework {

37 38 39 40 41 42
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
43

Q
qiaolongfei 已提交
44 45 46 47 48 49 50 51 52 53 54
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

55 56
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
57
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
58 59
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
60 61
  }

M
minqiyang 已提交
62 63
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
64
    if (UNLIKELY(!tensor.IsInitialized())) {
65
      return DDim({-1});
66
    }
M
minqiyang 已提交
67 68 69 70 71 72 73
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
74 75 76 77 78
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
79 80 81 82 83 84
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
85 86 87 88 89
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
90

M
minqiyang 已提交
91 92 93
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
94 95
      return "";
    }
M
minqiyang 已提交
96 97
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
98 99 100 101 102 103
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return DataTypeToString(ToDataType(tensor.type()));
    }
D
dzhwinter 已提交
104 105 106 107 108
  } else {
    return "";
  }
}

109 110 111 112 113 114
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
115 116
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
117 118 119 120 121
  }

  return -1;
}

Q
Qiao Longfei 已提交
122 123 124 125 126 127 128 129
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
130 131 132
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
133 134
      return default_lod;
    }
M
minqiyang 已提交
135
    return tensor.lod();
Q
Qiao Longfei 已提交
136 137 138 139 140
  } else {
    return default_lod;
  }
}

141
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
142 143 144 145 146
  try {
    if (VLOG_IS_ON(4)) {
      VLOG(4) << place << " " << DebugStringEx(&scope);
    }
    if (platform::is_gpu_place(place)) {
147
#ifndef PADDLE_WITH_CUDA
148
      PADDLE_THROW("Cannot run operator on place %s", place);
149
#else
150 151
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
152
#endif
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    }
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::RecordEvent record_event(Type(), pool.Get(place));
    RunImpl(scope, place);
    if (VLOG_IS_ON(3)) {
      VLOG(3) << place << " " << DebugStringEx(&scope);
    }
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
      throw exception;
    }

    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
      throw exception;
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
    throw exception;
  } catch (...) {
    std::rethrow_exception(std::current_exception());
183 184 185
  }
}

186 187 188 189 190 191 192 193
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

194
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
195
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
196
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
197 198
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
199
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
200 201
}

Y
Yu Yang 已提交
202 203
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
204
  auto it = inputs_.find(name);
205 206
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
207
  return it->second;
Y
Yan Chunwei 已提交
208 209
}

210
bool OperatorBase::HasOutputs(const std::string& name) const {
211
  if (outputs_.end() != outputs_.find(name)) {
212 213 214 215 216 217
    return true;
  } else {
    return false;
  }
}

218
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
219
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
220
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
221 222
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
223
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
224 225
}

Y
Yu Yang 已提交
226 227
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
228
  auto it = outputs_.find(name);
229 230
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
231
  return it->second;
Y
Yan Chunwei 已提交
232 233
}

234
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
235
  std::stringstream ss;
Y
Yu Yang 已提交
236
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
237 238
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
239 240
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
241 242
      auto var_name = input.second[i];
      ss << var_name;
243
      if (scope) {
Q
Qiao Longfei 已提交
244 245 246 247 248 249 250 251 252 253 254
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
255
        }
256
      }
Y
Yu Yang 已提交
257 258 259
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
260
    }
Y
Yu Yang 已提交
261
    ss << "]";
Y
Yu Yang 已提交
262 263
    ++it;
    if (it != inputs_.end()) {
264 265
      ss << ", ";
    }
Q
Qiao Longfei 已提交
266
  }
Y
Yu Yang 已提交
267
  ss << "}, outputs:{";
Y
Yu Yang 已提交
268 269
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
270 271
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
272 273
      auto var_name = output.second[i];
      ss << var_name;
274
      if (scope) {
Q
Qiao Longfei 已提交
275 276 277 278 279 280 281 282 283
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
284
        }
285
      }
Y
Yu Yang 已提交
286 287 288
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
289
    }
Y
Yu Yang 已提交
290
    ss << "]";
Y
Yu Yang 已提交
291 292
    ++it;
    if (it != outputs_.end()) {
293 294
      ss << ", ";
    }
Q
Qiao Longfei 已提交
295
  }
Y
Yu Yang 已提交
296
  ss << "}.";
Q
Qiao Longfei 已提交
297 298 299
  return ss.str();
}

Y
Yu Yang 已提交
300
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
301 302
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
303 304
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
305 306
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
307
}
308

Q
qijun 已提交
309 310
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
311
  for (auto& o : inputs_) {
Q
qijun 已提交
312 313 314 315 316 317
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
318 319 320 321 322 323 324 325 326 327
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
328
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
329 330

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
331
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
332 333 334 335 336 337 338 339 340
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
341 342
}

343 344 345
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
346
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
347 348

  for (auto& in : op_info->Proto().inputs()) {
349 350 351 352
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
353 354 355
  }

  for (auto& out : op_info->Proto().outputs()) {
356 357 358 359 360
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

377 378 379 380
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

381
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
382
  if (var->IsType<LoDTensor>()) {
383
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
384
  } else if (var->IsType<SelectedRows>()) {
385
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
386
  } else {
Y
Yang Yang 已提交
387 388
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
389 390 391 392 393
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
394
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
395
  } else if (var->IsType<SelectedRows>()) {
396
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
397
  } else {
Y
Yang Yang 已提交
398 399
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
400 401 402
  }
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

435
template <>
436
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
437
  auto* var = InputVar(name);
438 439
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
440 441 442
}

template <>
443
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
444 445 446 447
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
448 449 450 451 452
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
453 454 455 456
  return res;
}

template <>
457
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
458
  auto var = OutputVar(name);
Q
QI JUN 已提交
459
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
460 461 462
}

template <>
463
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
464 465 466 467
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
468 469
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
470 471
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
472
                                         : GetMutableTensorFromVar(var);
473
                 });
474 475 476
  return res;
}

Y
Yu Yang 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

492 493 494 495 496 497
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
498 499 500 501
    // has only one input
    const auto& ins = op_.Inputs();
    auto it = ins.find(name);
    if (it == ins.end()) {
502 503
      return false;
    }
504
    const auto& in = it->second;
T
tensor-tang 已提交
505
    if (in.size() == 0 || in[0] == kEmptyVarName) {
506 507
      return false;
    }
T
tensor-tang 已提交
508
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
509
                      "Input %s should not have more than one inputs", name);
510
    return scope_.FindVar(in[0]) != nullptr;
511 512 513
  }

  bool HasOutput(const std::string& name) const override {
514 515 516 517
    // has only one output
    const auto& outs = op_.Outputs();
    auto it = outs.find(name);
    if (it == outs.end()) {
518 519
      return false;
    }
520
    const auto& out = it->second;
T
tensor-tang 已提交
521
    if (out.size() == 0 || out[0] == kEmptyVarName) {
522 523
      return false;
    }
T
tensor-tang 已提交
524 525
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
526
    return scope_.FindVar(out[0]) != nullptr;
527 528 529
  }

  bool HasInputs(const std::string& name) const override {
530 531 532
    if (!op_.HasInputs(name)) {
      return false;
    }
533 534 535 536 537 538 539 540 541 542 543 544 545
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
546 547 548
    if (!op_.HasOutputs(name)) {
      return false;
    }
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
573 574 575 576 577 578 579 580 581 582 583 584
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
585

M
mozga-intel 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
619 620
  }

621 622 623
  bool IsRuntime() const override { return true; }

 protected:
624 625
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
626
    PADDLE_ENFORCE_NOT_NULL(var);
627 628 629 630 631
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
632 633 634 635 636 637 638
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
639
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
640
    PADDLE_THROW("Only compile time support this method");
641 642 643 644 645 646 647 648 649
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
650 651
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
652 653 654
    }
  }

F
fengjiayi 已提交
655 656
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
657
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
658 659
  }

660
  proto::VarType::Type GetVarType(const std::string& name) const override {
661 662 663 664
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
665 666 667 668
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

669
 private:
670 671 672 673
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
674 675 676 677 678
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
679
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
680 681 682 683 684 685 686 687
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

688 689
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
690 691
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
692
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
693
  auto* dev_ctx = pool.Get(place);
694

695 696 697 698
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
699 700
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
701 702
  }

Q
qiaolongfei 已提交
703 704
  OpKernelMap& kernels = kernels_iter->second;

705 706
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
707

708 709 710 711
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
712 713
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
714 715
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

716
  auto kernel_iter = kernels.find(expected_kernel_key);
717
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
718
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
719 720
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
721
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
722 723 724 725 726
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
727 728 729 730 731
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
732 733 734 735
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
736

Y
yuyang18 已提交
737 738 739 740 741 742
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
743
  }
Q
QI JUN 已提交
744

Y
yuyang18 已提交
745
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
746

Y
yuyang18 已提交
747 748 749
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
750 751
  }

D
dzhwinter 已提交
752
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
753
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
754
    dev_ctx->Wait();
D
dzhwinter 已提交
755
  }
C
chengduoZH 已提交
756 757 758

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
759
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
760 761 762
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
763 764
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
765 766 767
      }
    }
  }
Q
Qiao Longfei 已提交
768
}
Y
yuyang18 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
820
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
821 822 823 824 825 826
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
827

828
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
829 830 831
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
832
  std::string last_input_name;
Y
Yu Yang 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
847 848
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
849 850
              "DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
              Type(), last_input_name, data_type, ipt_name, tmp);
Y
Yu Yang 已提交
851
          data_type = tmp;
852
          last_input_name = ipt_name;
Y
Yu Yang 已提交
853 854 855 856 857
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
858
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
859
}
860

861 862 863 864 865 866 867 868
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
869 870
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
871 872
}

Q
Qiao Longfei 已提交
873
}  // namespace framework
L
liaogang 已提交
874
}  // namespace paddle