executor.cc 12.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yang Yang 已提交
17
#include <set>
Y
Yang Yang 已提交
18

Y
Yang Yu 已提交
19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
21 22 23 24 25 26 27
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/platform/place.h"
Y
Yang Yu 已提交
28

D
dzhwinter 已提交
29
DECLARE_bool(benchmark);
Y
Yang Yu 已提交
30 31 32
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
qijun 已提交
33 34 35 36

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
37
struct ExecutorPrepareContext {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  ExecutorPrepareContext(const framework::ProgramDesc* prog, size_t block_id,
                         bool own_program = true)
      : block_id_(block_id), own_program_(own_program) {
    if (own_program_) {
      prog_ = new ProgramDesc(*prog);
    } else {
      // If own_program_ is false, we can avoid a clone of the program.
      prog_ = prog;
    }
  }

  ~ExecutorPrepareContext() {
    if (own_program_) {
      delete prog_;
    }
  }
Y
Yu Yang 已提交
54

55
  const framework::ProgramDesc* prog_;
Y
Yu Yang 已提交
56
  size_t block_id_;
57
  bool own_program_;
Y
Yu Yang 已提交
58 59 60
  std::vector<std::unique_ptr<OperatorBase>> ops_;
};

D
dzhwinter 已提交
61
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
62

63 64
static void CreateTensor(Variable* var, proto::VarType::Type var_type) {
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
65
    var->GetMutable<LoDTensor>();
66
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
67
    var->GetMutable<SelectedRows>();
68
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
69
    var->GetMutable<FeedFetchList>();
70
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
71
    var->GetMutable<FeedFetchList>();
72
  } else if (var_type == proto::VarType::STEP_SCOPES) {
Y
Yu Yang 已提交
73
    var->GetMutable<std::vector<framework::Scope>>();
74
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
75
    var->GetMutable<LoDRankTable>();
76
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
77
    var->GetMutable<LoDTensorArray>();
78
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
79
    var->GetMutable<platform::PlaceList>();
80
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
81
    var->GetMutable<ReaderHolder>();
82 83
  } else if (var_type == proto::VarType::CHANNEL) {
    var->GetMutable<ChannelHolder>();
T
typhoonzero 已提交
84 85
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
86 87
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
88
        "Variable type %d is not in "
F
fengjiayi 已提交
89
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
T
typhoonzero 已提交
90
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
Y
Yu Yang 已提交
91
        var_type);
Q
QI JUN 已提交
92 93 94
  }
}

Y
Yang Yu 已提交
95 96
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
Y
Yang Yu 已提交
97
  if (tensor.memory_size() == 0) {
Y
Yang Yu 已提交
98 99
    return;
  }
Y
Yang Yu 已提交
100 101
  if (tensor.type().hash_code() != typeid(float).hash_code() &&
      tensor.type().hash_code() != typeid(double).hash_code()) {
Y
Yang Yu 已提交
102 103
    return;
  }
Y
Yi Wang 已提交
104 105 106 107
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
Y
Yang Yu 已提交
108 109
}

Y
Yu Yang 已提交
110
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
111
                   bool create_local_scope, bool create_vars) {
112
  auto* ctx = Prepare(pdesc, block_id, false);
Y
Yu Yang 已提交
113 114
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
  delete ctx;
Q
qijun 已提交
115 116
}

117 118 119 120 121 122 123
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
124 125
    const BlockDesc& block,
    std::map<std::string, const LoDTensor*>& feed_targets,
126 127
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
128
  for (auto* op : block.AllOps()) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    if (op->Type() == kFeedOpType) {
      feed_count++;
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

    // When feed operator are present, so should be feed_holder
147
    auto var = block.FindVar(feed_holder_name);
148 149
    PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                            feed_holder_name);
150
    PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
151 152 153 154 155 156 157 158 159 160 161 162 163 164
                      "'%s' variable should be 'FEED_MINIBATCH' type",
                      feed_holder_name);
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
165
    const BlockDesc& block, std::map<std::string, LoDTensor*>& fetch_targets,
166 167
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
168
  for (auto* op : block.AllOps()) {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    if (op->Type() == kFetchOpType) {
      fetch_count++;
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

    // When fetch operator are present, so should be fetch_holder
187
    auto var = block.FindVar(fetch_holder_name);
188 189
    PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                            fetch_holder_name);
190
    PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
191 192 193 194 195 196 197 198 199 200 201 202
                      "'%s' variable should be 'FETCH_LIST' type",
                      fetch_holder_name);
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
                   std::map<std::string, const LoDTensor*>& feed_targets,
                   std::map<std::string, LoDTensor*>& fetch_targets,
                   const std::string& feed_holder_name,
                   const std::string& fetch_holder_name) {
203 204 205 206 207 208 209 210 211 212
  bool has_feed_ops =
      has_feed_operators(program.Block(0), feed_targets, feed_holder_name);
  bool has_fetch_ops =
      has_fetch_operators(program.Block(0), fetch_targets, fetch_holder_name);

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
  if (!has_feed_ops || !has_fetch_ops) {
    copy_program = std::unique_ptr<ProgramDesc>(new ProgramDesc(program)).get();
  }

213 214
  auto* global_block = copy_program->MutableBlock(0);

215
  if (!has_feed_ops) {
216 217
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
218
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    feed_holder->SetPersistable(true);

    int i = 0;
    for (auto& feed_target : feed_targets) {
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

  // map the data of feed_targets to feed_holder
  for (auto* op : global_block->AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      SetFeedVariable(scope, *feed_targets[feed_target_name], feed_holder_name,
                      idx);
    }
  }

248
  if (!has_fetch_ops) {
249 250
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
251
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    fetch_holder->SetPersistable(true);

    int i = 0;
    for (auto& fetch_target : fetch_targets) {
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

  Run(*copy_program, scope, 0, true, true);

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block->AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      *fetch_targets[fetch_target_name] =
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

Y
Yu Yang 已提交
284
ExecutorPrepareContext* Executor::Prepare(const ProgramDesc& program,
285 286
                                          int block_id, bool own_program) {
  auto* ctx = new ExecutorPrepareContext(&program, block_id, own_program);
Y
Yu Yang 已提交
287 288 289 290 291 292 293 294 295 296
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
  return ctx;
}

void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars) {
297
  auto& block = ctx->prog_->Block(ctx->block_id_);
Y
Yu Yang 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
      for (auto& var : block.AllVars()) {
        if (var->Name() == framework::kEmptyVarName) {
          continue;
        }

        if (var->Persistable()) {
          auto* ptr = scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " global, which pointer is " << ptr;
        } else {
          auto* ptr = local_scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " locally, which pointer is " << ptr;
        }
      }
    } else {
      for (auto& var : block.AllVars()) {
        auto* ptr = local_scope->Var(var->Name());
        CreateTensor(ptr, var->GetType());
        VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
                << ptr;
      }
    }  // if (create_local_scope)
  }    // if (create_vars)

  for (auto& op : ctx->ops_) {
    VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
332
    op->Run(*local_scope, place_);
Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
    if (FLAGS_check_nan_inf) {
      for (auto& vname : op->OutputVars(true)) {
        auto* var = local_scope->FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
        }
      }
    }
  }
  if (create_vars && create_local_scope) {
    scope->DeleteScope(local_scope);
  }
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

Q
qijun 已提交
359 360
}  // namespace framework
}  // namespace paddle