prior_box_op.h 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/transform.h"
W
wanghaox 已提交
21 22 23 24

namespace paddle {
namespace operators {

W
wanghaox 已提交
25 26
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
27
                               std::vector<float>* output_aspect_ratior) {
28
  constexpr float epsilon = 1e-6;
29 30
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
W
wanghaox 已提交
31 32 33
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
34 35
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
W
wanghaox 已提交
36 37 38 39 40
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
41
      output_aspect_ratior->push_back(ar);
W
wanghaox 已提交
42
      if (flip) {
43
        output_aspect_ratior->push_back(1.0f / ar);
W
wanghaox 已提交
44 45 46 47 48
      }
    }
  }
}

W
wanghaox 已提交
49 50
template <typename T>
struct ClipFunctor {
51
  HOSTDEVICE inline T operator()(T in) const {
W
wanghaox 已提交
52 53 54 55
    return std::min<T>(std::max<T>(in, 0.), 1.);
  }
};

56
template <typename T>
W
wanghaox 已提交
57 58 59 60 61
class PriorBoxOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<paddle::framework::Tensor>("Input");
    auto* image = ctx.Input<paddle::framework::Tensor>("Image");
W
wanghaox 已提交
62 63
    auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
    auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");
W
wanghaox 已提交
64

C
chengduoZH 已提交
65 66
    auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
W
wanghaox 已提交
67 68 69 70 71 72
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");

    std::vector<float> aspect_ratios;
73
    ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
W
wanghaox 已提交
74

W
wanghaox 已提交
75 76 77
    T step_w = static_cast<T>(ctx.Attr<float>("step_w"));
    T step_h = static_cast<T>(ctx.Attr<float>("step_h"));
    T offset = static_cast<T>(ctx.Attr<float>("offset"));
W
wanghaox 已提交
78

W
wanghaox 已提交
79 80
    auto img_width = image->dims()[3];
    auto img_height = image->dims()[2];
W
wanghaox 已提交
81

W
wanghaox 已提交
82 83
    auto feature_width = input->dims()[3];
    auto feature_height = input->dims()[2];
W
wanghaox 已提交
84

W
wanghaox 已提交
85
    T step_width, step_height;
W
wanghaox 已提交
86
    if (step_w == 0 || step_h == 0) {
W
wanghaox 已提交
87 88
      step_width = static_cast<T>(img_width) / feature_width;
      step_height = static_cast<T>(img_height) / feature_height;
W
wanghaox 已提交
89 90 91 92 93 94 95 96 97 98
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }

W
wanghaox 已提交
99 100
    boxes->mutable_data<T>(ctx.GetPlace());
    vars->mutable_data<T>(ctx.GetPlace());
W
wanghaox 已提交
101

W
wanghaox 已提交
102
    auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes);
W
wanghaox 已提交
103 104
    for (int h = 0; h < feature_height; ++h) {
      for (int w = 0; w < feature_width; ++w) {
W
wanghaox 已提交
105 106 107
        T center_x = (w + offset) * step_width;
        T center_y = (h + offset) * step_height;
        T box_width, box_height;
108
        int idx = 0;
W
wanghaox 已提交
109
        for (size_t s = 0; s < min_sizes.size(); ++s) {
C
chengduoZH 已提交
110
          auto min_size = min_sizes[s];
111 112 113 114 115
          // priors with different aspect ratios
          for (size_t r = 0; r < aspect_ratios.size(); ++r) {
            float ar = aspect_ratios[r];
            box_width = min_size * sqrt(ar) / 2.;
            box_height = min_size / sqrt(ar) / 2.;
116 117 118 119
            e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
            e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
            e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
            e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
120
            idx++;
W
wanghaox 已提交
121
          }
122 123 124 125
          if (max_sizes.size() > 0) {
            auto max_size = max_sizes[s];
            // square prior with size sqrt(minSize * maxSize)
            box_width = box_height = sqrt(min_size * max_size) / 2.;
126 127 128 129
            e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
            e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
            e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
            e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
130
            idx++;
W
wanghaox 已提交
131 132 133 134 135 136
          }
        }
      }
    }

    if (clip) {
W
wanghaox 已提交
137 138 139 140 141
      platform::Transform<platform::CPUDeviceContext> trans;
      ClipFunctor<T> clip_func;
      trans(ctx.template device_context<platform::CPUDeviceContext>(),
            boxes->data<T>(), boxes->data<T>() + boxes->numel(),
            boxes->data<T>(), clip_func);
W
wanghaox 已提交
142
    }
W
wanghaox 已提交
143

W
wanghaox 已提交
144 145 146 147 148
    framework::Tensor var_t;
    var_t.mutable_data<T>(
        framework::make_ddim({1, static_cast<int>(variances.size())}),
        ctx.GetPlace());
    auto var_et = framework::EigenTensor<T, 2>::From(var_t);
W
wanghaox 已提交
149
    for (size_t i = 0; i < variances.size(); ++i) {
W
wanghaox 已提交
150
      var_et(0, i) = variances[i];
W
wanghaox 已提交
151
    }
W
wanghaox 已提交
152

W
wanghaox 已提交
153
    int box_num = feature_height * feature_width * num_priors;
W
wanghaox 已提交
154 155 156 157 158 159 160
    auto var_dim = vars->dims();
    vars->Resize({box_num, static_cast<int>(variances.size())});

    auto e_vars = framework::EigenMatrix<T, Eigen::RowMajor>::From(*vars);
    e_vars = var_et.broadcast(Eigen::DSizes<int, 2>(box_num, 1));

    vars->Resize(var_dim);
W
wanghaox 已提交
161
  }
W
wanghaox 已提交
162
};  // namespace operators
W
wanghaox 已提交
163 164 165

}  // namespace operators
}  // namespace paddle