mot_keypoint_unite_infer.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import math
18
import copy
19
import numpy as np
20
from collections import defaultdict
21 22
import paddle

23 24
from utils import get_current_memory_mb
from infer import Detector, PredictConfig, print_arguments, get_test_images
25
from visualize import draw_pose
26

27 28
from mot_keypoint_unite_utils import argsparser
from keypoint_infer import KeyPoint_Detector, PredictConfig_KeyPoint
29
from det_keypoint_unite_infer import predict_with_given_det, bench_log
30 31 32 33 34
from mot_jde_infer import JDE_Detector

from ppdet.modeling.mot.visualization import plot_tracking_dict
from ppdet.modeling.mot.utils import MOTTimer as FPSTimer
from ppdet.modeling.mot.utils import write_mot_results
G
George Ni 已提交
35

36 37 38 39 40
# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}
G
George Ni 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

def convert_mot_to_det(tlwhs, scores):
    results = {}
    num_mot = len(tlwhs)
    xyxys = copy.deepcopy(tlwhs)
    for xyxy in xyxys.copy():
        xyxy[2:] = xyxy[2:] + xyxy[:2]
    # support single class now
    results['boxes'] = np.vstack(
        [np.hstack([0, scores[i], xyxys[i]]) for i in range(num_mot)])
    return results


def mot_keypoint_unite_predict_image(mot_model,
                                     keypoint_model,
                                     image_list,
                                     keypoint_batch_size=1):
59 60 61
    num_classes = mot_model.num_classes
    assert num_classes == 1, 'Only one category mot model supported for uniting keypoint deploy.'
    data_type = 'mot'
G
George Ni 已提交
62
    image_list.sort()
G
George Ni 已提交
63 64 65 66
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)

        if FLAGS.run_benchmark:
67 68
            online_tlwhs, online_scores, online_ids = mot_model.predict(
                [frame], FLAGS.mot_threshold, warmup=10, repeats=10)
G
George Ni 已提交
69 70 71 72 73
            cm, gm, gu = get_current_memory_mb()
            mot_model.cpu_mem += cm
            mot_model.gpu_mem += gm
            mot_model.gpu_util += gu

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        else:
            online_tlwhs, online_scores, online_ids = mot_model.predict(
                [frame], FLAGS.mot_threshold)

        keypoint_arch = keypoint_model.pred_config.arch
        if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown':
            results = convert_mot_to_det(online_tlwhs, online_scores)
            keypoint_results = predict_with_given_det(
                frame, results, keypoint_model, keypoint_batch_size,
                FLAGS.mot_threshold, FLAGS.keypoint_threshold,
                FLAGS.run_benchmark)

        else:
            warmup = 10 if FLAGS.run_benchmark else 0
            repeats = 10 if FLAGS.run_benchmark else 1
            keypoint_results = keypoint_model.predict(
                [frame],
                FLAGS.keypoint_threshold,
                warmup=warmup,
                repeats=repeats)

        if FLAGS.run_benchmark:
G
George Ni 已提交
96 97 98 99 100 101 102 103 104
            cm, gm, gu = get_current_memory_mb()
            keypoint_model.cpu_mem += cm
            keypoint_model.gpu_mem += gm
            keypoint_model.gpu_util += gu
        else:
            im = draw_pose(
                frame,
                keypoint_results,
                visual_thread=FLAGS.keypoint_threshold,
105 106 107 108
                returnimg=True,
                ids=online_ids
                if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown'
                else None)
G
George Ni 已提交
109

110 111 112 113 114 115 116
            online_im = plot_tracking_dict(
                im,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=i)
G
George Ni 已提交
117 118 119
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
120 121 122 123
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
124 125


126 127 128 129
def mot_keypoint_unite_predict_video(mot_model,
                                     keypoint_model,
                                     camera_id,
                                     keypoint_batch_size=1):
130 131 132 133 134 135
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
136
    # Get Video info : resolution, fps, frame count
137 138
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
139 140 141 142
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

143 144 145
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
146
    if not FLAGS.save_images:
147
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
G
George Ni 已提交
148
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
149 150 151 152
    frame_id = 0
    timer_mot = FPSTimer()
    timer_kp = FPSTimer()
    timer_mot_kp = FPSTimer()
153 154 155 156 157 158 159

    # support single class and multi classes, but should be single class here
    mot_results = defaultdict(list)
    num_classes = mot_model.num_classes
    assert num_classes == 1, 'Only one category mot model supported for uniting keypoint deploy.'
    data_type = 'mot'

160 161 162 163 164 165 166
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer_mot_kp.tic()
        timer_mot.tic()
        online_tlwhs, online_scores, online_ids = mot_model.predict(
167
            [frame], FLAGS.mot_threshold)
168
        timer_mot.toc()
169 170
        mot_results[0].append(
            (frame_id + 1, online_tlwhs[0], online_scores[0], online_ids[0]))
171 172 173
        mot_fps = 1. / timer_mot.average_time

        timer_kp.tic()
174 175 176

        keypoint_arch = keypoint_model.pred_config.arch
        if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown':
177
            results = convert_mot_to_det(online_tlwhs[0], online_scores[0])
178 179 180 181 182 183 184 185
            keypoint_results = predict_with_given_det(
                frame, results, keypoint_model, keypoint_batch_size,
                FLAGS.mot_threshold, FLAGS.keypoint_threshold,
                FLAGS.run_benchmark)

        else:
            keypoint_results = keypoint_model.predict([frame],
                                                      FLAGS.keypoint_threshold)
186 187 188 189 190 191 192 193 194
        timer_kp.toc()
        timer_mot_kp.toc()
        kp_fps = 1. / timer_kp.average_time
        mot_kp_fps = 1. / timer_mot_kp.average_time

        im = draw_pose(
            frame,
            keypoint_results,
            visual_thread=FLAGS.keypoint_threshold,
195
            returnimg=True,
G
George Ni 已提交
196 197 198
            ids=online_ids
            if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown' else
            None)
199

200
        online_im = plot_tracking_dict(
201
            im,
202
            num_classes,
203 204 205 206 207 208 209 210 211
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=mot_kp_fps)

        im = np.array(online_im)

        frame_id += 1
212
        print('detect frame: %d' % (frame_id))
213 214 215 216 217 218 219

        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
220 221
        else:
            writer.write(im)
222 223 224 225 226 227 228
        if camera_id != -1:
            cv2.imshow('Tracking and keypoint results', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
229
        write_mot_results(result_filename, mot_results, data_type, num_classes)
G
George Ni 已提交
230 231 232

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
233 234
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
G
George Ni 已提交
235 236 237 238
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
239 240 241


def main():
G
George Ni 已提交
242
    pred_config = PredictConfig(FLAGS.mot_model_dir)
243
    mot_model = JDE_Detector(
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        pred_config,
        FLAGS.mot_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig_KeyPoint(FLAGS.keypoint_model_dir)
    keypoint_model = KeyPoint_Detector(
        pred_config,
        FLAGS.keypoint_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
261
        batch_size=FLAGS.keypoint_batch_size,
262 263 264 265 266 267 268 269 270 271 272
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        mot_keypoint_unite_predict_video(mot_model, keypoint_model,
273 274
                                         FLAGS.camera_id,
                                         FLAGS.keypoint_batch_size)
275
    else:
G
George Ni 已提交
276 277
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
278 279
        mot_keypoint_unite_predict_image(mot_model, keypoint_model, img_list,
                                         FLAGS.keypoint_batch_size)
G
George Ni 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

        if not FLAGS.run_benchmark:
            mot_model.det_times.info(average=True)
            keypoint_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            mot_model_dir = FLAGS.mot_model_dir
            mot_model_info = {
                'model_name': mot_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(mot_model, img_list, mot_model_info, name='MOT')

            keypoint_model_dir = FLAGS.keypoint_model_dir
            keypoint_model_info = {
                'model_name': keypoint_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(keypoint_model, img_list, keypoint_model_info, 'KeyPoint')
299 300 301 302 303 304 305 306 307 308 309 310


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()