iou_loss.py 9.1 KB
Newer Older
C
CodesFarmer 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import NumpyArrayInitializer

from paddle import fluid
from ppdet.core.workspace import register, serializable

__all__ = ['IouLoss']


@register
@serializable
class IouLoss(object):
    """
    iou loss, see https://arxiv.org/abs/1908.03851
    loss = 1.0 - iou * iou
    Args:
        loss_weight (float): iou loss weight, default is 2.5
        max_height (int): max height of input to support random shape input
        max_width (int): max width of input to support random shape input
W
wangguanzhong 已提交
38 39
        ciou_term (bool): whether to add ciou_term
        loss_square (bool): whether to square the iou term
C
CodesFarmer 已提交
40
    """
41

W
wangguanzhong 已提交
42 43 44 45 46 47
    def __init__(self,
                 loss_weight=2.5,
                 max_height=608,
                 max_width=608,
                 ciou_term=False,
                 loss_square=True):
C
CodesFarmer 已提交
48 49 50
        self._loss_weight = loss_weight
        self._MAX_HI = max_height
        self._MAX_WI = max_width
W
wangguanzhong 已提交
51 52
        self.ciou_term = ciou_term
        self.loss_square = loss_square
C
CodesFarmer 已提交
53

54 55 56 57 58 59 60 61 62 63 64 65
    def __call__(self,
                 x,
                 y,
                 w,
                 h,
                 tx,
                 ty,
                 tw,
                 th,
                 anchors,
                 downsample_ratio,
                 batch_size,
L
lxastro 已提交
66
                 ioup=None,
67
                 eps=1.e-10):
C
CodesFarmer 已提交
68 69 70 71 72 73 74 75 76
        '''
        Args:
            x  | y | w | h  ([Variables]): the output of yolov3 for encoded x|y|w|h
            tx |ty |tw |th  ([Variables]): the target of yolov3 for encoded x|y|w|h
            anchors ([float]): list of anchors for current output layer
            downsample_ratio (float): the downsample ratio for current output layer
            batch_size (int): training batch size
            eps (float): the decimal to prevent the denominator eqaul zero
        '''
W
wangguanzhong 已提交
77 78 79 80 81 82 83 84 85
        pred = self._bbox_transform(x, y, w, h, anchors, downsample_ratio,
                                    batch_size, False)
        gt = self._bbox_transform(tx, ty, tw, th, anchors, downsample_ratio,
                                  batch_size, True)
        iouk = self._iou(pred, gt, ioup, eps)
        if self.loss_square:
            loss_iou = 1. - iouk * iouk
        else:
            loss_iou = 1. - iouk
L
lxastro 已提交
86 87 88 89
        loss_iou = loss_iou * self._loss_weight

        return loss_iou

W
wangguanzhong 已提交
90 91 92
    def _iou(self, pred, gt, ioup=None, eps=1.e-10):
        x1, y1, x2, y2 = pred
        x1g, y1g, x2g, y2g = gt
C
CodesFarmer 已提交
93 94 95 96 97 98 99 100 101 102 103
        x2 = fluid.layers.elementwise_max(x1, x2)
        y2 = fluid.layers.elementwise_max(y1, y2)

        xkis1 = fluid.layers.elementwise_max(x1, x1g)
        ykis1 = fluid.layers.elementwise_max(y1, y1g)
        xkis2 = fluid.layers.elementwise_min(x2, x2g)
        ykis2 = fluid.layers.elementwise_min(y2, y2g)

        intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
        intsctk = intsctk * fluid.layers.greater_than(
            xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1)
104 105
        unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
                                                        ) - intsctk + eps
C
CodesFarmer 已提交
106
        iouk = intsctk / unionk
W
wangguanzhong 已提交
107 108 109
        if self.ciou_term:
            ciou = self.get_ciou_term(pred, gt, iouk, eps)
            iouk = iouk - ciou
L
lxastro 已提交
110
        return iouk
C
CodesFarmer 已提交
111

W
wangguanzhong 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    def get_ciou_term(self, pred, gt, iouk, eps):
        x1, y1, x2, y2 = pred
        x1g, y1g, x2g, y2g = gt

        cx = (x1 + x2) / 2
        cy = (y1 + y2) / 2
        w = (x2 - x1) + fluid.layers.cast((x2 - x1) == 0, 'float32')
        h = (y2 - y1) + fluid.layers.cast((y2 - y1) == 0, 'float32')

        cxg = (x1g + x2g) / 2
        cyg = (y1g + y2g) / 2
        wg = x2g - x1g
        hg = y2g - y1g

        # A or B
        xc1 = fluid.layers.elementwise_min(x1, x1g)
        yc1 = fluid.layers.elementwise_min(y1, y1g)
        xc2 = fluid.layers.elementwise_max(x2, x2g)
        yc2 = fluid.layers.elementwise_max(y2, y2g)

        # DIOU term
        dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
        dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
        diou_term = (dist_intersection + eps) / (dist_union + eps)
        # CIOU term
        ciou_term = 0
        ar_gt = wg / hg
        ar_pred = w / h
        arctan = fluid.layers.atan(ar_gt) - fluid.layers.atan(ar_pred)
        ar_loss = 4. / np.pi / np.pi * arctan * arctan
        alpha = ar_loss / (1 - iouk + ar_loss + eps)
        alpha.stop_gradient = True
        ciou_term = alpha * ar_loss
        return diou_term + ciou_term

147 148
    def _bbox_transform(self, dcx, dcy, dw, dh, anchors, downsample_ratio,
                        batch_size, is_gt):
C
CodesFarmer 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        grid_x = int(self._MAX_WI / downsample_ratio)
        grid_y = int(self._MAX_HI / downsample_ratio)
        an_num = len(anchors) // 2

        shape_fmp = fluid.layers.shape(dcx)
        shape_fmp.stop_gradient = True
        # generate the grid_w x grid_h center of feature map
        idx_i = np.array([[i for i in range(grid_x)]])
        idx_j = np.array([[j for j in range(grid_y)]]).transpose()
        gi_np = np.repeat(idx_i, grid_y, axis=0)
        gi_np = np.reshape(gi_np, newshape=[1, 1, grid_y, grid_x])
        gi_np = np.tile(gi_np, reps=[batch_size, an_num, 1, 1])
        gj_np = np.repeat(idx_j, grid_x, axis=1)
        gj_np = np.reshape(gj_np, newshape=[1, 1, grid_y, grid_x])
        gj_np = np.tile(gj_np, reps=[batch_size, an_num, 1, 1])
        gi_max = self._create_tensor_from_numpy(gi_np.astype(np.float32))
        gi = fluid.layers.crop(x=gi_max, shape=dcx)
        gi.stop_gradient = True
        gj_max = self._create_tensor_from_numpy(gj_np.astype(np.float32))
        gj = fluid.layers.crop(x=gj_max, shape=dcx)
        gj.stop_gradient = True

        grid_x_act = fluid.layers.cast(shape_fmp[3], dtype="float32")
        grid_x_act.stop_gradient = True
        grid_y_act = fluid.layers.cast(shape_fmp[2], dtype="float32")
        grid_y_act.stop_gradient = True
        if is_gt:
            cx = fluid.layers.elementwise_add(dcx, gi) / grid_x_act
            cx.gradient = True
            cy = fluid.layers.elementwise_add(dcy, gj) / grid_y_act
            cy.gradient = True
        else:
            dcx_sig = fluid.layers.sigmoid(dcx)
            cx = fluid.layers.elementwise_add(dcx_sig, gi) / grid_x_act
            dcy_sig = fluid.layers.sigmoid(dcy)
            cy = fluid.layers.elementwise_add(dcy_sig, gj) / grid_y_act

        anchor_w_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 0]
        anchor_w_np = np.array(anchor_w_)
        anchor_w_np = np.reshape(anchor_w_np, newshape=[1, an_num, 1, 1])
        anchor_w_np = np.tile(anchor_w_np, reps=[batch_size, 1, grid_y, grid_x])
190 191
        anchor_w_max = self._create_tensor_from_numpy(
            anchor_w_np.astype(np.float32))
C
CodesFarmer 已提交
192 193 194 195 196 197
        anchor_w = fluid.layers.crop(x=anchor_w_max, shape=dcx)
        anchor_w.stop_gradient = True
        anchor_h_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 1]
        anchor_h_np = np.array(anchor_h_)
        anchor_h_np = np.reshape(anchor_h_np, newshape=[1, an_num, 1, 1])
        anchor_h_np = np.tile(anchor_h_np, reps=[batch_size, 1, grid_y, grid_x])
198 199
        anchor_h_max = self._create_tensor_from_numpy(
            anchor_h_np.astype(np.float32))
C
CodesFarmer 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        anchor_h = fluid.layers.crop(x=anchor_h_max, shape=dcx)
        anchor_h.stop_gradient = True
        # e^tw e^th
        exp_dw = fluid.layers.exp(dw)
        exp_dh = fluid.layers.exp(dh)
        pw = fluid.layers.elementwise_mul(exp_dw, anchor_w) / \
            (grid_x_act * downsample_ratio)
        ph = fluid.layers.elementwise_mul(exp_dh, anchor_h) / \
            (grid_y_act * downsample_ratio)
        if is_gt:
            exp_dw.stop_gradient = True
            exp_dh.stop_gradient = True
            pw.stop_gradient = True
            ph.stop_gradient = True

        x1 = cx - 0.5 * pw
        y1 = cy - 0.5 * ph
        x2 = cx + 0.5 * pw
        y2 = cy + 0.5 * ph
        if is_gt:
            x1.stop_gradient = True
            y1.stop_gradient = True
            x2.stop_gradient = True
            y2.stop_gradient = True

        return x1, y1, x2, y2

    def _create_tensor_from_numpy(self, numpy_array):
        paddle_array = fluid.layers.create_parameter(
            attr=ParamAttr(),
            shape=numpy_array.shape,
            dtype=numpy_array.dtype,
            default_initializer=NumpyArrayInitializer(numpy_array))
        paddle_array.stop_gradient = True
        return paddle_array