keypoint_utils.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import numpy as np


def get_affine_mat_kernel(h, w, s, inv=False):
    if w < h:
        w_ = s
        h_ = int(np.ceil((s / w * h) / 64.) * 64)
        scale_w = w
        scale_h = h_ / w_ * w

    else:
        h_ = s
        w_ = int(np.ceil((s / h * w) / 64.) * 64)
        scale_h = h
        scale_w = w_ / h_ * h

    center = np.array([np.round(w / 2.), np.round(h / 2.)])

    size_resized = (w_, h_)
    trans = get_affine_transform(
        center, np.array([scale_w, scale_h]), 0, size_resized, inv=inv)

    return trans, size_resized


def get_affine_transform(center,
                         input_size,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.

    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
W
wangguanzhong 已提交
51
        input_size (np.ndarray[2, ]): Size of input feature (width, height).
52 53 54 55 56 57 58 59 60 61 62 63 64 65
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ]): Size of the destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)

    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(output_size) == 2
    assert len(shift) == 2

W
wangguanzhong 已提交
66 67
    if not isinstance(input_size, (np.ndarray, list)):
        input_size = np.array([input_size, input_size], dtype=np.float32)
68 69 70 71 72 73 74 75 76 77 78 79
    scale_tmp = input_size

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
W
wangguanzhong 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


J
JYChen 已提交
98
def get_warp_matrix(theta, size_input, size_dst, size_target):
99 100 101 102
    """This code is based on
        https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py

        Calculate the transformation matrix under the constraint of unbiased.
J
JYChen 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
    Data Processing for Human Pose Estimation (CVPR 2020).

    Args:
        theta (float): Rotation angle in degrees.
        size_input (np.ndarray): Size of input image [w, h].
        size_dst (np.ndarray): Size of output image [w, h].
        size_target (np.ndarray): Size of ROI in input plane [w, h].

    Returns:
        matrix (np.ndarray): A matrix for transformation.
    """
    theta = np.deg2rad(theta)
    matrix = np.zeros((2, 3), dtype=np.float32)
    scale_x = size_dst[0] / size_target[0]
    scale_y = size_dst[1] / size_target[1]
    matrix[0, 0] = np.cos(theta) * scale_x
    matrix[0, 1] = -np.sin(theta) * scale_x
    matrix[0, 2] = scale_x * (
        -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
        np.sin(theta) + 0.5 * size_target[0])
    matrix[1, 0] = np.sin(theta) * scale_y
    matrix[1, 1] = np.cos(theta) * scale_y
    matrix[1, 2] = scale_y * (
        -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
        np.cos(theta) + 0.5 * size_target[1])
    return matrix


132 133 134 135 136 137 138 139 140 141 142 143 144 145
def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.

    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.

    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)

    Returns:
        np.ndarray: The 3rd point.
    """
W
wangguanzhong 已提交
146 147 148 149
    assert len(
        a) == 2, 'input of _get_3rd_point should be point with length of 2'
    assert len(
        b) == 2, 'input of _get_3rd_point should be point with length of 2'
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.

    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian

    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def transpred(kpts, h, w, s):
    trans, _ = get_affine_mat_kernel(h, w, s, inv=True)

    return warp_affine_joints(kpts[..., :2].copy(), trans)


def warp_affine_joints(joints, mat):
    """Apply affine transformation defined by the transform matrix on the
    joints.

    Args:
        joints (np.ndarray[..., 2]): Origin coordinate of joints.
        mat (np.ndarray[3, 2]): The affine matrix.

    Returns:
        matrix (np.ndarray[..., 2]): Result coordinate of joints.
    """
    joints = np.array(joints)
    shape = joints.shape
    joints = joints.reshape(-1, 2)
    return np.dot(np.concatenate(
        (joints, joints[:, 0:1] * 0 + 1), axis=1),
                  mat.T).reshape(shape)
Z
zhiboniu 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339


def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]


def transform_preds(coords, center, scale, output_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords


def oks_iou(g, d, a_g, a_d, sigmas=None, in_vis_thre=None):
    if not isinstance(sigmas, np.ndarray):
        sigmas = np.array([
            .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,
            .87, .87, .89, .89
        ]) / 10.0
    vars = (sigmas * 2)**2
    xg = g[0::3]
    yg = g[1::3]
    vg = g[2::3]
    ious = np.zeros((d.shape[0]))
    for n_d in range(0, d.shape[0]):
        xd = d[n_d, 0::3]
        yd = d[n_d, 1::3]
        vd = d[n_d, 2::3]
        dx = xd - xg
        dy = yd - yg
        e = (dx**2 + dy**2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2
        if in_vis_thre is not None:
            ind = list(vg > in_vis_thre) and list(vd > in_vis_thre)
            e = e[ind]
        ious[n_d] = np.sum(np.exp(-e)) / e.shape[0] if e.shape[0] != 0 else 0.0
    return ious


def oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None):
    """greedily select boxes with high confidence and overlap with current maximum <= thresh
    rule out overlap >= thresh

    Args:
        kpts_db (list): The predicted keypoints within the image
        thresh (float): The threshold to select the boxes
        sigmas (np.array): The variance to calculate the oks iou
            Default: None
        in_vis_thre (float): The threshold to select the high confidence boxes
            Default: None

    Return:
        keep (list): indexes to keep
    """

    if len(kpts_db) == 0:
        return []

    scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))])
    kpts = np.array(
        [kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))])
    areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))])

    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
                          sigmas, in_vis_thre)

        inds = np.where(oks_ovr <= thresh)[0]
        order = order[inds + 1]

    return keep


def rescore(overlap, scores, thresh, type='gaussian'):
    assert overlap.shape[0] == scores.shape[0]
    if type == 'linear':
        inds = np.where(overlap >= thresh)[0]
        scores[inds] = scores[inds] * (1 - overlap[inds])
    else:
        scores = scores * np.exp(-overlap**2 / thresh)

    return scores


def soft_oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None):
    """greedily select boxes with high confidence and overlap with current maximum <= thresh
    rule out overlap >= thresh

    Args:
        kpts_db (list): The predicted keypoints within the image
        thresh (float): The threshold to select the boxes
        sigmas (np.array): The variance to calculate the oks iou
            Default: None
        in_vis_thre (float): The threshold to select the high confidence boxes
            Default: None

    Return:
        keep (list): indexes to keep
    """

    if len(kpts_db) == 0:
        return []

    scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))])
    kpts = np.array(
        [kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))])
    areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))])

    order = scores.argsort()[::-1]
    scores = scores[order]

    # max_dets = order.size
    max_dets = 20
    keep = np.zeros(max_dets, dtype=np.intp)
    keep_cnt = 0
    while order.size > 0 and keep_cnt < max_dets:
        i = order[0]

        oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]],
                          sigmas, in_vis_thre)

        order = order[1:]
        scores = rescore(oks_ovr, scores[1:], thresh)

        tmp = scores.argsort()[::-1]
        order = order[tmp]
        scores = scores[tmp]

        keep[keep_cnt] = i
        keep_cnt += 1

    keep = keep[:keep_cnt]

    return keep