vision_transformer.py 23.6 KB
Newer Older
W
Wenyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from paddle.nn.initializer import Constant

from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.core.workspace import register, serializable

from .transformer_utils import zeros_, DropPath, Identity


class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 window_size=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias_attr=False)

        if qkv_bias:
            self.q_bias = self.create_parameter(
                shape=([dim]), default_initializer=zeros_)
            self.v_bias = self.create_parameter(
                shape=([dim]), default_initializer=zeros_)
        else:
            self.q_bias = None
            self.v_bias = None
        if window_size:
            self.window_size = window_size
            self.num_relative_distance = (2 * window_size[0] - 1) * (
                2 * window_size[1] - 1) + 3
            self.relative_position_bias_table = self.create_parameter(
                shape=(self.num_relative_distance, num_heads),
                default_initializer=zeros_)  # 2*Wh-1 * 2*Ww-1, nH
            # cls to token & token 2 cls & cls to cls

            # get pair-wise relative position index for each token inside the window
            coords_h = paddle.arange(window_size[0])
            coords_w = paddle.arange(window_size[1])
            coords = paddle.stack(paddle.meshgrid(
                [coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = paddle.flatten(coords, 1)  # 2, Wh*Ww 
            coords_flatten_1 = paddle.unsqueeze(coords_flatten, 2)
            coords_flatten_2 = paddle.unsqueeze(coords_flatten, 1)
            relative_coords = coords_flatten_1.clone() - coords_flatten_2.clone(
            )

            #relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Wh
            relative_coords = relative_coords.transpose(
                (1, 2, 0))  #.contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += window_size[
                0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * window_size[1] - 1
            relative_position_index = \
                paddle.zeros(shape=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
            relative_position_index[1:, 1:] = relative_coords.sum(
                -1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1

            self.register_buffer("relative_position_index",
                                 relative_position_index)
            # trunc_normal_(self.relative_position_bias_table, std=.0)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, rel_pos_bias=None):
        x_shape = paddle.shape(x)
        N, C = x_shape[1], x_shape[2]

        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = paddle.concat(
                (self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias))
        qkv = F.linear(x, weight=self.qkv.weight, bias=qkv_bias)

        qkv = qkv.reshape((-1, N, 3, self.num_heads,
                           C // self.num_heads)).transpose((2, 0, 3, 1, 4))
        q, k, v = qkv[0], qkv[1], qkv[2]
        attn = (q.matmul(k.transpose((0, 1, 3, 2)))) * self.scale

        if self.relative_position_bias_table is not None:
            relative_position_bias = self.relative_position_bias_table[
                self.relative_position_index.reshape([-1])].reshape([
                    self.window_size[0] * self.window_size[1] + 1,
                    self.window_size[0] * self.window_size[1] + 1, -1
                ])  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.transpose(
                (2, 0, 1))  #.contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)
        if rel_pos_bias is not None:
            attn = attn + rel_pos_bias

        attn = nn.functional.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)

        x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 window_size=None,
                 init_values=None,
                 act_layer=nn.GELU,
                 norm_layer='nn.LayerNorm',
                 epsilon=1e-5):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, epsilon=1e-6)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            window_size=window_size)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
        self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim,
                       hidden_features=mlp_hidden_dim,
                       act_layer=act_layer,
                       drop=drop)
        if init_values is not None:
            self.gamma_1 = self.create_parameter(
                shape=([dim]), default_initializer=Constant(value=init_values))
            self.gamma_2 = self.create_parameter(
                shape=([dim]), default_initializer=Constant(value=init_values))
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x, rel_pos_bias=None):

        if self.gamma_1 is None:
            x = x + self.drop_path(
                self.attn(
                    self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(
                self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Layer):
    """ Image to Patch Embedding
    """

    def __init__(self,
                 img_size=[224, 224],
                 patch_size=16,
                 in_chans=3,
                 embed_dim=768):
        super().__init__()
        self.num_patches_w = img_size[0] // patch_size
        self.num_patches_h = img_size[1] // patch_size

        num_patches = self.num_patches_w * self.num_patches_h
        self.patch_shape = (img_size[0] // patch_size,
                            img_size[1] // patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2D(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    @property
    def num_patches_in_h(self):
        return self.img_size[1] // self.patch_size

    @property
    def num_patches_in_w(self):
        return self.img_size[0] // self.patch_size

    def forward(self, x, mask=None):
        B, C, H, W = x.shape
        return self.proj(x)


class RelativePositionBias(nn.Layer):
    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (2 * window_size[0] - 1) * (
            2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = self.create_parameter(
            shape=(self.num_relative_distance, num_heads),
            default_initialize=zeros_)
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = paddle.arange(window_size[0])
        coords_w = paddle.arange(window_size[1])
        coords = paddle.stack(paddle.meshgrid(
            [coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = coords.flatten(1)  # 2, Wh*Ww

        relative_coords = coords_flatten[:, :,
                                         None] - coords_flatten[:,
                                                                None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.transpos(
            (1, 2, 0))  # Wh*Ww, Wh*Ww, 2 
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = \
            paddle.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
        relative_position_index[1:, 1:] = relative_coords.sum(
            -1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1
        self.register_buffer("relative_position_index", relative_position_index)

    def forward(self):
        relative_position_bias = \
            self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                 self.window_size[0] * self.window_size[1] + 1,
                 self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH 
        return relative_position_bias.transpose((2, 0, 1))  # nH, Wh*Ww, Wh*Ww


def get_sinusoid_encoding_table(n_position, d_hid, token=False):
    ''' Sinusoid position encoding table '''

    def get_position_angle_vec(position):
        return [
            position / np.power(10000, 2 * (hid_j // 2) / d_hid)
            for hid_j in range(d_hid)
        ]

    sinusoid_table = np.array(
        [get_position_angle_vec(pos_i) for pos_i in range(n_position)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
    if token:
        sinusoid_table = np.concatenate(
            [sinusoid_table, np.zeros([1, d_hid])], dim=0)

    return paddle.to_tensor(sinusoid_table, dtype=paddle.float32).unsqueeze(0)


@register
@serializable
class VisionTransformer(nn.Layer):
    """ Vision Transformer with support for patch input
    """

    def __init__(self,
                 img_size=[672, 1092],
                 patch_size=16,
                 in_chans=3,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_layer='nn.LayerNorm',
                 init_values=None,
                 use_rel_pos_bias=False,
                 use_shared_rel_pos_bias=False,
                 epsilon=1e-5,
                 final_norm=False,
                 pretrained=None,
                 out_indices=[3, 5, 7, 11],
                 use_abs_pos_emb=False,
                 use_sincos_pos_emb=True,
                 with_fpn=True,
343
                 use_checkpoint=False,
W
Wenyu 已提交
344 345 346 347 348
                 **args):
        super().__init__()
        self.img_size = img_size
        self.embed_dim = embed_dim
        self.with_fpn = with_fpn
349 350 351
        self.use_checkpoint = use_checkpoint
        if use_checkpoint:
            print('please set: FLAGS_allocator_strategy=naive_best_fit')
W
Wenyu 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim)

        self.pos_w = self.patch_embed.num_patches_in_w
        self.pos_h = self.patch_embed.num_patches_in_h

        self.cls_token = self.create_parameter(
            shape=(1, 1, embed_dim),
            default_initializer=paddle.nn.initializer.Constant(value=0.))

        if use_abs_pos_emb:
            self.pos_embed = self.create_parameter(
                shape=(1, self.pos_w * self.pos_h + 1, embed_dim),
                default_initializer=paddle.nn.initializer.TruncatedNormal(
                    std=.02))
        elif use_sincos_pos_emb:
            pos_embed = self.build_2d_sincos_position_embedding(embed_dim)
            self.pos_embed = pos_embed

            self.pos_embed = self.create_parameter(shape=pos_embed.shape)
            self.pos_embed.set_value(pos_embed.numpy())
            self.pos_embed.stop_gradient = True

        else:
            self.pos_embed = None

        self.pos_drop = nn.Dropout(p=drop_rate)

        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBias(
                window_size=self.patch_embed.patch_shape, num_heads=num_heads)

        elif self.use_sincos_pos_emb:
            self.pos_embed = self.build_2d_sincos_position_embedding(embed_dim)

        else:
            self.rel_pos_bias = None

        self.use_rel_pos_bias = use_rel_pos_bias

        dpr = np.linspace(0, drop_path_rate, depth)

        self.blocks = nn.LayerList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                init_values=init_values,
                window_size=self.patch_embed.patch_shape
                if use_rel_pos_bias else None,
                epsilon=epsilon) for i in range(depth)
        ])

        self.final_norm = final_norm
        ######### del by xy
        #if self.final_norm:
        #    self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
        self.pretrained = pretrained
        self.init_weight()

        assert len(out_indices) <= 4, ''
        self.out_indices = out_indices
        self.out_channels = [embed_dim for _ in range(len(out_indices))]
        self.out_strides = [4, 8, 16, 32][-len(out_indices):]

        self.norm = Identity()

        if self.with_fpn:
            self.init_fpn(
                embed_dim=embed_dim,
                patch_size=patch_size, )

    def init_weight(self):
        pretrained = self.pretrained

        if pretrained:
            if 'http' in pretrained:  #URL
                path = paddle.utils.download.get_weights_path_from_url(
                    pretrained)
            else:  #model in local path
                path = pretrained

            load_state_dict = paddle.load(path)
            model_state_dict = self.state_dict()
            pos_embed_name = "pos_embed"

            if pos_embed_name in load_state_dict.keys():
                load_pos_embed = paddle.to_tensor(
                    load_state_dict[pos_embed_name], dtype="float32")
                if self.pos_embed.shape != load_pos_embed.shape:
                    pos_size = int(math.sqrt(load_pos_embed.shape[1] - 1))
                    model_state_dict[pos_embed_name] = self.resize_pos_embed(
                        load_pos_embed, (pos_size, pos_size),
                        (self.pos_h, self.pos_w))

                    # self.set_state_dict(model_state_dict)
                    load_state_dict[pos_embed_name] = model_state_dict[
                        pos_embed_name]

                    print("Load pos_embed and resize it from {} to {} .".format(
                        load_pos_embed.shape, self.pos_embed.shape))

            self.set_state_dict(load_state_dict)
            print("Load load_state_dict....")

    def init_fpn(self, embed_dim=768, patch_size=16, out_with_norm=False):
        if patch_size == 16:
            self.fpn1 = nn.Sequential(
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2),
                nn.BatchNorm2D(embed_dim),
                nn.GELU(),
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2), )

            self.fpn2 = nn.Sequential(
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2), )

            self.fpn3 = Identity()

            self.fpn4 = nn.MaxPool2D(kernel_size=2, stride=2)
        elif patch_size == 8:
            self.fpn1 = nn.Sequential(
                nn.Conv2DTranspose(
                    embed_dim, embed_dim, kernel_size=2, stride=2), )

            self.fpn2 = Identity()

            self.fpn3 = nn.Sequential(nn.MaxPool2D(kernel_size=2, stride=2), )

            self.fpn4 = nn.Sequential(nn.MaxPool2D(kernel_size=4, stride=4), )

        if not out_with_norm:
            self.norm = Identity()
        else:
            self.norm = nn.LayerNorm(embed_dim, epsilon=1e-6)

    def interpolate_pos_encoding(self, x, w, h):
        npatch = x.shape[1] - 1
        N = self.pos_embed.shape[1] - 1
        w0 = w // self.patch_embed.patch_size
        h0 = h // self.patch_embed.patch_size
        if npatch == N and w0 == self.patch_embed.num_patches_w and h0 == self.patch_embed.num_patches_h:
            return self.pos_embed
        class_pos_embed = self.pos_embed[:, 0]
        patch_pos_embed = self.pos_embed[:, 1:]
        dim = x.shape[-1]
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        w0, h0 = w0 + 0.1, h0 + 0.1

        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed.reshape([
                1, self.patch_embed.num_patches_w,
                self.patch_embed.num_patches_h, dim
            ]).transpose((0, 3, 1, 2)),
            scale_factor=(w0 / self.patch_embed.num_patches_w,
                          h0 / self.patch_embed.num_patches_h),
            mode='bicubic', )
        assert int(w0) == patch_pos_embed.shape[-2] and int(
            h0) == patch_pos_embed.shape[-1]
        patch_pos_embed = patch_pos_embed.transpose(
            (0, 2, 3, 1)).reshape([1, -1, dim])
        return paddle.concat(
            (class_pos_embed.unsqueeze(0), patch_pos_embed), axis=1)

    def resize_pos_embed(self, pos_embed, old_hw, new_hw):
        """
        Resize pos_embed weight.
        Args:
            pos_embed (Tensor): the pos_embed weight
            old_hw (list[int]): the height and width of old pos_embed
            new_hw (list[int]): the height and width of new pos_embed
        Returns:
            Tensor: the resized pos_embed weight
        """
        cls_pos_embed = pos_embed[:, :1, :]
        pos_embed = pos_embed[:, 1:, :]

        pos_embed = pos_embed.transpose([0, 2, 1])
        pos_embed = pos_embed.reshape([1, -1, old_hw[0], old_hw[1]])
        pos_embed = F.interpolate(
            pos_embed, new_hw, mode='bicubic', align_corners=False)
        pos_embed = pos_embed.flatten(2).transpose([0, 2, 1])
        pos_embed = paddle.concat([cls_pos_embed, pos_embed], axis=1)

        return pos_embed

    def build_2d_sincos_position_embedding(
            self,
            embed_dim=768,
            temperature=10000., ):
        h, w = self.patch_embed.patch_shape
        grid_w = paddle.arange(w, dtype=paddle.float32)
        grid_h = paddle.arange(h, dtype=paddle.float32)
        grid_w, grid_h = paddle.meshgrid(grid_w, grid_h)
        assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
        pos_dim = embed_dim // 4
        omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
        omega = 1. / (temperature**omega)

        out_w = grid_w.flatten()[..., None] @omega[None]
        out_h = grid_h.flatten()[..., None] @omega[None]

        pos_emb = paddle.concat(
            [
                paddle.sin(out_w), paddle.cos(out_w), paddle.sin(out_h),
                paddle.cos(out_h)
            ],
            axis=1)[None, :, :]

        pe_token = paddle.zeros([1, 1, embed_dim], dtype=paddle.float32)
        pos_embed = paddle.concat([pe_token, pos_emb], axis=1)
        # pos_embed.stop_gradient = True

        return pos_embed

    def forward(self, x):
        x = x['image'] if isinstance(x, dict) else x
581
        _, _, h, w = x.shape
W
Wenyu 已提交
582 583 584 585 586 587 588 589 590 591

        x = self.patch_embed(x)

        x_shape = paddle.shape(x)  # b * c * h * w

        cls_tokens = self.cls_token.expand((x_shape[0], -1, -1))
        x = x.flatten(2).transpose([0, 2, 1])  # b * hw * c
        x = paddle.concat([cls_tokens, x], axis=1)

        if self.pos_embed is not None:
592 593
            # x = x + self.interpolate_pos_encoding(x, w, h)
            x = x + self.interpolate_pos_encoding(x, h, w)
W
Wenyu 已提交
594 595 596 597 598 599 600 601 602 603

        x = self.pos_drop(x)

        rel_pos_bias = self.rel_pos_bias(
        ) if self.rel_pos_bias is not None else None

        B, _, Hp, Wp = x_shape

        feats = []
        for idx, blk in enumerate(self.blocks):
604 605 606 607 608 609
            if self.use_checkpoint:
                x = paddle.distributed.fleet.utils.recompute(
                    blk, x, rel_pos_bias, **{"preserve_rng_state": True})
            else:
                x = blk(x, rel_pos_bias)

W
Wenyu 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
            if idx in self.out_indices:
                xp = paddle.reshape(
                    paddle.transpose(
                        self.norm(x[:, 1:, :]), perm=[0, 2, 1]),
                    shape=[B, -1, Hp, Wp])
                feats.append(xp)

        if self.with_fpn:
            fpns = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
            for i in range(len(feats)):
                feats[i] = fpns[i](feats[i])

        return feats

    @property
    def num_layers(self):
        return len(self.blocks)

    @property
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    @property
    def out_shape(self):
        return [
            ShapeSpec(
                channels=c, stride=s)
            for c, s in zip(self.out_channels, self.out_strides)
        ]