vgg.py 6.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8
from __future__ import division

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import Conv2D, MaxPool2D
from ppdet.core.workspace import register, serializable
9
from ..shape_spec import ShapeSpec
Q
qingqing01 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

__all__ = ['VGG']

VGG_cfg = {16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4]}


class ConvBlock(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 groups,
                 pool_size=2,
                 pool_stride=2,
                 pool_padding=0,
                 name=None):
        super(ConvBlock, self).__init__()

        self.groups = groups
        self.conv0 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(name=name + "1_weights"),
            bias_attr=ParamAttr(name=name + "1_bias"))
        self.conv_out_list = []
        for i in range(1, groups):
            conv_out = self.add_sublayer(
                'conv{}'.format(i),
                Conv2D(
                    in_channels=out_channels,
                    out_channels=out_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(
                        name=name + "{}_weights".format(i + 1)),
                    bias_attr=ParamAttr(name=name + "{}_bias".format(i + 1))))
            self.conv_out_list.append(conv_out)

        self.pool = MaxPool2D(
            kernel_size=pool_size,
            stride=pool_stride,
            padding=pool_padding,
            ceil_mode=True)

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = F.relu(out)
        for conv_i in self.conv_out_list:
            out = conv_i(out)
            out = F.relu(out)
        pool = self.pool(out)
        return out, pool


class ExtraBlock(nn.Layer):
    def __init__(self,
                 in_channels,
                 mid_channels,
                 out_channels,
                 padding,
                 stride,
                 kernel_size,
                 name=None):
        super(ExtraBlock, self).__init__()

        self.conv0 = Conv2D(
            in_channels=in_channels,
            out_channels=mid_channels,
            kernel_size=1,
            stride=1,
            padding=0)
        self.conv1 = Conv2D(
            in_channels=mid_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding)

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = F.relu(out)
        out = self.conv1(out)
        out = F.relu(out)
        return out


class L2NormScale(nn.Layer):
    def __init__(self, num_channels, scale=1.0):
        super(L2NormScale, self).__init__()
        self.scale = self.create_parameter(
            attr=ParamAttr(initializer=paddle.nn.initializer.Constant(scale)),
            shape=[num_channels])

    def forward(self, inputs):
        out = F.normalize(inputs, axis=1, epsilon=1e-10)
        # out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(
        #     out) * out
        out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3) * out
        return out


@register
@serializable
class VGG(nn.Layer):
    def __init__(self,
                 depth=16,
                 normalizations=[20., -1, -1, -1, -1, -1],
                 extra_block_filters=[[256, 512, 1, 2, 3], [128, 256, 1, 2, 3],
                                      [128, 256, 0, 1, 3],
                                      [128, 256, 0, 1, 3]]):
        super(VGG, self).__init__()

        assert depth in [16, 19], \
                "depth as 16/19 supported currently, but got {}".format(depth)
        self.depth = depth
        self.groups = VGG_cfg[depth]
        self.normalizations = normalizations
        self.extra_block_filters = extra_block_filters

132 133
        self._out_channels = []

Q
qingqing01 已提交
134 135 136 137 138 139 140 141 142 143
        self.conv_block_0 = ConvBlock(
            3, 64, self.groups[0], 2, 2, 0, name="conv1_")
        self.conv_block_1 = ConvBlock(
            64, 128, self.groups[1], 2, 2, 0, name="conv2_")
        self.conv_block_2 = ConvBlock(
            128, 256, self.groups[2], 2, 2, 0, name="conv3_")
        self.conv_block_3 = ConvBlock(
            256, 512, self.groups[3], 2, 2, 0, name="conv4_")
        self.conv_block_4 = ConvBlock(
            512, 512, self.groups[4], 3, 1, 1, name="conv5_")
144
        self._out_channels.append(512)
Q
qingqing01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158

        self.fc6 = Conv2D(
            in_channels=512,
            out_channels=1024,
            kernel_size=3,
            stride=1,
            padding=6,
            dilation=6)
        self.fc7 = Conv2D(
            in_channels=1024,
            out_channels=1024,
            kernel_size=1,
            stride=1,
            padding=0)
159
        self._out_channels.append(1024)
Q
qingqing01 已提交
160 161 162 163 164 165 166 167 168 169 170

        # extra block
        self.extra_convs = []
        last_channels = 1024
        for i, v in enumerate(self.extra_block_filters):
            assert len(v) == 5, "extra_block_filters size not fix"
            extra_conv = self.add_sublayer("conv{}".format(6 + i),
                                           ExtraBlock(last_channels, v[0], v[1],
                                                      v[2], v[3], v[4]))
            last_channels = v[1]
            self.extra_convs.append(extra_conv)
171
            self._out_channels.append(last_channels)
Q
qingqing01 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

        self.norms = []
        for i, n in enumerate(self.normalizations):
            if n != -1:
                norm = self.add_sublayer("norm{}".format(i),
                                         L2NormScale(
                                             self.extra_block_filters[i][1], n))
            else:
                norm = None
            self.norms.append(norm)

    def forward(self, inputs):
        outputs = []

        conv, pool = self.conv_block_0(inputs['image'])
        conv, pool = self.conv_block_1(pool)
        conv, pool = self.conv_block_2(pool)
        conv, pool = self.conv_block_3(pool)
        outputs.append(conv)

        conv, pool = self.conv_block_4(pool)
        out = self.fc6(pool)
        out = F.relu(out)
        out = self.fc7(out)
        out = F.relu(out)
        outputs.append(out)

        if not self.extra_block_filters:
200
            return outputs
Q
qingqing01 已提交
201 202 203 204 205 206 207 208 209 210 211

        # extra block
        for extra_conv in self.extra_convs:
            out = extra_conv(out)
            outputs.append(out)

        for i, n in enumerate(self.normalizations):
            if n != -1:
                outputs[i] = self.norms[i](outputs[i])

        return outputs
212 213 214 215

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]