README_en.md 7.2 KB
Newer Older
qq_30618961's avatar
qq_30618961 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Face Detection Model

## Introduction
`face_detection` High efficiency, high speed face detection solutions, including the most advanced models and classic models.

![](../../docs/images/12_Group_Group_12_Group_Group_12_935.jpg)

## Model Library

#### A mAP on the WIDERFACE dataset

| Network structure | size | images/GPUs | Learning rate strategy | Easy/Medium/Hard Set  | Prediction delay(SD855)| Model size(MB) | Download | Configuration File |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
14 15
| BlazeFace  | 640  |    8    | 1000e     | 0.885 / 0.855 / 0.731 | - | 0.472 |[link](https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams) | [Configuration File](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection/blazeface_1000e.yml) |
| BlazeFace-FPN-SSH  | 640  |    8    | 1000e     | 0.907 / 0.883 / 0.793 | - | 0.479 |[link](https://paddledet.bj.bcebos.com/models/blazeface_fpn_ssh_1000e.pdparams) | [Configuration File](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection/blazeface_fpn_ssh_1000e.yml) |
qq_30618961's avatar
qq_30618961 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

**Attention:**  
- We use a multi-scale evaluation strategy to get the mAP in `Easy/Medium/Hard Set`. Please refer to the [evaluation on the WIDER FACE dataset](#Evaluated-on-the-WIDER-FACE-Dataset) for details.

## Quick Start

### Data preparation
We use [WIDER-FACE dataset](http://shuoyang1213.me/WIDERFACE/) for training and model tests, the official web site provides detailed data is introduced.
- WIDER-Face data source:  
- Load a dataset of type `wider_face` using the following directory structure:
  ```
  dataset/wider_face/
  ├── wider_face_split
  │   ├── wider_face_train_bbx_gt.txt
  │   ├── wider_face_val_bbx_gt.txt
  ├── WIDER_train
  │   ├── images
  │   │   ├── 0--Parade
  │   │   │   ├── 0_Parade_marchingband_1_100.jpg
  │   │   │   ├── 0_Parade_marchingband_1_381.jpg
  │   │   │   │   ...
  │   │   ├── 10--People_Marching
  │   │   │   ...
  ├── WIDER_val
  │   ├── images
  │   │   ├── 0--Parade
  │   │   │   ├── 0_Parade_marchingband_1_1004.jpg
  │   │   │   ├── 0_Parade_marchingband_1_1045.jpg
  │   │   │   │   ...
  │   │   ├── 10--People_Marching
  │   │   │   ...
  ```

- Manually download the dataset:
To download the WIDER-FACE dataset, run the following command:
```
cd dataset/wider_face && ./download_wider_face.sh
```

### Parameter configuration
The configuration of the base model can be referenced to `configs/face_detection/_base_/blazeface.yml`
Improved model to add FPN and SSH neck structure, configuration files can be referenced to `configs/face_detection/_base_/blazeface_fpn.yml`, You can configure FPN and SSH as required
```yaml
BlazeNet:
   blaze_filters: [[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]]
   double_blaze_filters: [[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
                           [96, 24, 96, 2], [96, 24, 96], [96, 24, 96]]
   act: hard_swish #Configure Blaze Block activation function in Backbone. The basic model is Relu. hard_swish is needed to add FPN and SSH

BlazeNeck:
   neck_type : fpn_ssh #only_fpn, only_ssh and fpn_ssh
   in_channel: [96,96]
```



### Training and Evaluation
The training process and evaluation process methods are consistent with other algorithms, please refer to [GETTING_STARTED_cn.md](../../docs/tutorials/GETTING_STARTED_cn.md)
**Attention:** Face detection models currently do not support training and evaluation.

#### Evaluated on the WIDER-FACE Dataset
- Step 1: Evaluate and generate a result file:
```shell
python -u tools/eval.py -c configs/face_detection/blazeface_1000e.yml \
       -o weights=output/blazeface_1000e/model_final \
       multi_scale=True
```
Set `multi_scale=True` for multi-scale evaluation. After evaluation, test results in TXT format will be generated in `output/pred`.

- Step 2: Download the official evaluation script and Ground Truth file:
```
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
```

- Step 3: Start the evaluation

Method 1: Python evaluation:
```
git clone https://github.com/wondervictor/WiderFace-Evaluation.git
cd WiderFace-Evaluation
# compile
python3 setup.py build_ext --inplace
# Begin to assess
python3 evaluation.py -p /path/to/PaddleDetection/output/pred -g /path/to/eval_tools/ground_truth
```

Method 2: MatLab evaluation:
```
# Change the name of save result path and draw curve in `eval_tools/wider_eval.m`:
pred_dir = './pred';  
legend_name = 'Paddle-BlazeFace';

`wider_eval.m` is the main implementation of the evaluation module. Run the following command:
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
```

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
### Use by Python Code
In order to support development, here is an example of using the Paddle Detection whl package to make predictions through Python code.
```python
import cv2
import paddle
import numpy as np
from ppdet.core.workspace import load_config
from ppdet.engine import Trainer
from ppdet.metrics import get_infer_results
from ppdet.data.transform.operators import NormalizeImage, Permute


if __name__ == '__main__':
    # prepare for the parameters
    config_path = 'PaddleDetection/configs/face_detection/blazeface_1000e.yml'
    cfg = load_config(config_path)
    weight_path = 'PaddleDetection/output/blazeface_1000e.pdparams'
    infer_img_path = 'PaddleDetection/demo/hrnet_demo.jpg'
    cfg.weights = weight_path
    bbox_thre = 0.8
    paddle.set_device('gpu')
    # create the class object
    trainer = Trainer(cfg, mode='test')
    trainer.load_weights(cfg.weights)
    trainer.model.eval()
    normaler = NormalizeImage(mean=[123, 117, 104], std=[127.502231, 127.502231, 127.502231], is_scale=False)
    permuter = Permute()
    # read the image file
    im = cv2.imread(infer_img_path)
    im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    # prepare for the data dict
    data_dict = {'image': im}
    data_dict = normaler(data_dict)
    data_dict = permuter(data_dict)
    h, w, c = im.shape
    data_dict['im_id'] = paddle.Tensor(np.array([[0]]))
    data_dict['im_shape'] = paddle.Tensor(np.array([[h, w]], dtype=np.float32))
    data_dict['scale_factor'] = paddle.Tensor(np.array([[1., 1.]], dtype=np.float32))
    data_dict['image'] = paddle.Tensor(data_dict['image'].reshape((1, c, h, w)))
    data_dict['curr_iter'] = paddle.Tensor(np.array([0]))
    # do the prediction
    outs = trainer.model(data_dict)
    # to do the postprocess to get the final bbox info
    for key in ['im_shape', 'scale_factor', 'im_id']:
        outs[key] = data_dict[key]
    for key, value in outs.items():
        outs[key] = value.numpy()
    clsid2catid, catid2name = {0: 'face'}, {0: 0}
    batch_res = get_infer_results(outs, clsid2catid)
    bbox = [sub_dict for sub_dict in batch_res['bbox'] if sub_dict['score'] > bbox_thre]
    print(bbox)
```

qq_30618961's avatar
qq_30618961 已提交
166 167 168 169 170 171 172 173 174 175 176

## Citations

```
@article{bazarevsky2019blazeface,
      title={BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs},
      author={Valentin Bazarevsky and Yury Kartynnik and Andrey Vakunov and Karthik Raveendran and Matthias Grundmann},
      year={2019},
      eprint={1907.05047},
      archivePrefix={arXiv},
```