attr_infer.py 11.2 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
from functools import reduce

import cv2
import numpy as np
import math
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

from benchmark_utils import PaddleInferBenchmark
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine
from visualize import visualize_attr
from utils import argsparser, Timer, get_current_memory_mb
from infer import Detector, get_test_images, print_arguments, load_predictor

from PIL import Image, ImageDraw, ImageFont


class AttrDetector(Detector):
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
    """

    def __init__(
            self,
            model_dir,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
            output_dir='output',
            threshold=0.5, ):
        super(AttrDetector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )

    def get_label(self):
        return self.pred_config.labels

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        im_results = result['output']
        im_results = np.where(im_results < self.threshold, 0, im_results)
        label_list = [['Head', ['Hat', 'Glasses']], [
            'Upper', [
                'ShortSleeve', 'LongSleeve', 'UpperStride', 'UpperLogo',
                'UpperPlaid', 'UpperSplice'
            ]
        ], [
            'Lower', [
                'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts',
                'Skirt&Dress'
            ]
        ], ['Shoes', ['boots']], [
            'Accessory',
            ['HandBag', 'ShoulderBag', 'Backpack', 'HoldObjectsInFront']
        ], ['Age', ['AgeOver60', 'Age18-60', 'AgeLess18']],
                      ['Gender', ['Female']],
                      ['Direction', ['Front', 'Side', 'Back']]]

        attr_type = [name[0] for name in label_list]
        labels = self.pred_config.labels

        batch_res = []
        for res in im_results:
            label_res = {}
            label_res = {t: [] for t in attr_type}
            num = 0
            for i in range(len(label_list)):
                type_name_i = attr_type[i]
                attr_name_list = label_list[i][1]
                for attr_name in attr_name_list:
                    attr_name = labels[num]
                    output_prob = res[num]
                    if output_prob != 0:
                        label_res[type_name_i].append(attr_name)
                    num += 1

            if len(label_res['Shoes']) == 0:
                label_res['Shoes'] = ['no boots']
            if len(label_res['Gender']) == 0:
                label_res['Gender'] = ['Male']
            label_res['Age'] = [labels[19 + np.argmax(res[19:22])]]
            label_res['Direction'] = [labels[23 + np.argmax(res[23:])]]
            batch_res.append(label_res)
        result = {'output': batch_res}
        return result

    def predict(self, repeats=1):
        '''
        Args:
            repeats (int): repeats number for prediction
        Returns:
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's result include 'masks': np.ndarray:
                            shape: [N, im_h, im_w]
        '''
        # model prediction
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            output_tensor = self.predictor.get_output_handle(output_names[0])
            np_output = output_tensor.copy_to_cpu()
        result = dict(output=np_output)
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
        results = []
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list, result, output_dir=self.output_dir)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

        results = self.merge_batch_result(results)
        return results

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].extend(v)
        return results


def visualize(image_list, batch_res, output_dir='output'):

    # visualize the predict result
    batch_res = batch_res['output']
    for image_file, res in zip(image_list, batch_res):
        im = visualize_attr(image_file, [res])
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        img_name = os.path.split(image_file)[-1]
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)


def main():
    detector = AttrDetector(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)

    # predict from image
    if FLAGS.image_dir is None and FLAGS.image_file is not None:
        assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
    img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
    detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
    if not FLAGS.run_benchmark:
        detector.det_times.info(average=True)
    else:
        mems = {
            'cpu_rss_mb': detector.cpu_mem / len(img_list),
            'gpu_rss_mb': detector.gpu_mem / len(img_list),
            'gpu_util': detector.gpu_util * 100 / len(img_list)
        }

        perf_info = detector.det_times.report(average=True)
        model_dir = FLAGS.model_dir
        mode = FLAGS.run_mode
        model_info = {
            'model_name': model_dir.strip('/').split('/')[-1],
            'precision': mode.split('_')[-1]
        }
        data_info = {
            'batch_size': FLAGS.batch_size,
            'shape': "dynamic_shape",
            'data_num': perf_info['img_num']
        }
        det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
                                       perf_info, mems)
        det_log('Attr')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"

    main()