ssd_loss.py 6.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
23 24
from ..ops import iou_similarity
from ..bbox_utils import bbox2delta
Q
qingqing01 已提交
25 26 27 28 29 30

__all__ = ['SSDLoss']


@register
class SSDLoss(nn.Layer):
31 32 33 34
    """
    SSDLoss

    Args:
35 36
        overlap_threshold (float32, optional): IoU threshold for negative bboxes
            and positive bboxes, 0.5 by default.
37 38 39
        neg_pos_ratio (float): The ratio of negative samples / positive samples.
        loc_loss_weight (float): The weight of loc_loss.
        conf_loss_weight (float): The weight of conf_loss.
40 41
        prior_box_var (list): Variances corresponding to prior box coord, [0.1,
            0.1, 0.2, 0.2] by default.
42 43
    """

Q
qingqing01 已提交
44 45 46 47
    def __init__(self,
                 overlap_threshold=0.5,
                 neg_pos_ratio=3.0,
                 loc_loss_weight=1.0,
48 49
                 conf_loss_weight=1.0,
                 prior_box_var=[0.1, 0.1, 0.2, 0.2]):
Q
qingqing01 已提交
50 51 52 53 54
        super(SSDLoss, self).__init__()
        self.overlap_threshold = overlap_threshold
        self.neg_pos_ratio = neg_pos_ratio
        self.loc_loss_weight = loc_loss_weight
        self.conf_loss_weight = conf_loss_weight
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        self.prior_box_var = [1. / a for a in prior_box_var]

    def _bipartite_match_for_batch(self, gt_bbox, gt_label, prior_boxes,
                                   bg_index):
        """
        Args:
            gt_bbox (Tensor): [B, N, 4]
            gt_label (Tensor): [B, N, 1]
            prior_boxes (Tensor): [A, 4]
            bg_index (int): Background class index
        """
        batch_size, num_priors = gt_bbox.shape[0], prior_boxes.shape[0]
        ious = iou_similarity(gt_bbox.reshape((-1, 4)), prior_boxes).reshape(
            (batch_size, -1, num_priors))

        # Calculate the number of object per sample.
        num_object = (ious.sum(axis=-1) > 0).astype('int64').sum(axis=-1)

        # For each prior box, get the max IoU of all GTs.
        prior_max_iou, prior_argmax_iou = ious.max(axis=1), ious.argmax(axis=1)
        # For each GT, get the max IoU of all prior boxes.
        gt_max_iou, gt_argmax_iou = ious.max(axis=2), ious.argmax(axis=2)

        # Gather target bbox and label according to 'prior_argmax_iou' index.
        batch_ind = paddle.arange(
            0, batch_size, dtype='int64').unsqueeze(-1).tile([1, num_priors])
        prior_argmax_iou = paddle.stack([batch_ind, prior_argmax_iou], axis=-1)
        targets_bbox = paddle.gather_nd(gt_bbox, prior_argmax_iou)
        targets_label = paddle.gather_nd(gt_label, prior_argmax_iou)
        # Assign negative
        bg_index_tensor = paddle.full([batch_size, num_priors, 1], bg_index,
                                      'int64')
        targets_label = paddle.where(
            prior_max_iou.unsqueeze(-1) < self.overlap_threshold,
            bg_index_tensor, targets_label)

        # Ensure each GT can match the max IoU prior box.
Q
qingqing01 已提交
92
        for i in range(batch_size):
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            if num_object[i] > 0:
                targets_bbox[i] = paddle.scatter(
                    targets_bbox[i], gt_argmax_iou[i, :int(num_object[i])],
                    gt_bbox[i, :int(num_object[i])])
                targets_label[i] = paddle.scatter(
                    targets_label[i], gt_argmax_iou[i, :int(num_object[i])],
                    gt_label[i, :int(num_object[i])])

        # Encode box
        prior_boxes = prior_boxes.unsqueeze(0).tile([batch_size, 1, 1])
        targets_bbox = bbox2delta(
            prior_boxes.reshape([-1, 4]),
            targets_bbox.reshape([-1, 4]), self.prior_box_var)
        targets_bbox = targets_bbox.reshape([batch_size, -1, 4])

        return targets_bbox, targets_label

    def _mine_hard_example(self, conf_loss, targets_label, bg_index):
        pos = (targets_label != bg_index).astype(conf_loss.dtype)
Q
qingqing01 已提交
112
        num_pos = pos.sum(axis=1, keepdim=True)
113
        neg = (targets_label == bg_index).astype(conf_loss.dtype)
Q
qingqing01 已提交
114

115
        conf_loss = conf_loss.clone() * neg
Q
qingqing01 已提交
116 117 118
        loss_idx = conf_loss.argsort(axis=1, descending=True)
        idx_rank = loss_idx.argsort(axis=1)
        num_negs = []
119
        for i in range(conf_loss.shape[0]):
Q
qingqing01 已提交
120
            cur_num_pos = num_pos[i]
121 122
            num_neg = paddle.clip(
                cur_num_pos * self.neg_pos_ratio, max=pos.shape[1])
Q
qingqing01 已提交
123
            num_negs.append(num_neg)
124
        num_neg = paddle.stack(num_negs).expand_as(idx_rank)
Q
qingqing01 已提交
125 126
        neg_mask = (idx_rank < num_neg).astype(conf_loss.dtype)

127 128 129
        return (neg_mask + pos).astype('bool')

    def forward(self, boxes, scores, gt_bbox, gt_label, prior_boxes):
130 131
        boxes = paddle.concat(boxes, axis=1)
        scores = paddle.concat(scores, axis=1)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        gt_label = gt_label.unsqueeze(-1).astype('int64')
        prior_boxes = paddle.concat(prior_boxes, axis=0)
        bg_index = scores.shape[-1] - 1

        # Match bbox and get targets.
        targets_bbox, targets_label = \
            self._bipartite_match_for_batch(gt_bbox, gt_label, prior_boxes, bg_index)
        targets_bbox.stop_gradient = True
        targets_label.stop_gradient = True

        # Compute regression loss.
        # Select positive samples.
        bbox_mask = (targets_label != bg_index).astype(boxes.dtype)
        loc_loss = bbox_mask * F.smooth_l1_loss(
            boxes, targets_bbox, reduction='none')
        loc_loss = loc_loss.sum() * self.loc_loss_weight

        # Compute confidence loss.
        conf_loss = F.softmax_with_cross_entropy(scores, targets_label)
        # Mining hard examples.
        label_mask = self._mine_hard_example(
            conf_loss.squeeze(-1), targets_label.squeeze(-1), bg_index)
        conf_loss = conf_loss * label_mask.unsqueeze(-1).astype(conf_loss.dtype)
        conf_loss = conf_loss.sum() * self.conf_loss_weight

        # Compute overall weighted loss.
        normalizer = (targets_label != bg_index).astype('float32').sum().clip(
            min=1)
        loss = (conf_loss + loc_loss) / (normalizer + 1e-9)
Q
qingqing01 已提交
161 162

        return loss