picodet_s_320_pedestrian.yml 3.1 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
use_gpu: true
log_iter: 20
save_dir: output
snapshot_epoch: 1
print_flops: false
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x0_75_pretrained.pdparams
weights: output/picodet_s_320_pedestrian/model_final
find_unused_parameters: True
use_ema: true
cycle_epoch: 40
snapshot_epoch: 10
epoch: 300
metric: COCO
num_classes: 1

architecture: PicoDet

PicoDet:
  backbone: ESNet
  neck: CSPPAN
  head: PicoHead

ESNet:
  scale: 0.75
  feature_maps: [4, 11, 14]
  act: hard_swish
  channel_ratio: [0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

CSPPAN:
  out_channels: 96
  use_depthwise: True
  num_csp_blocks: 1
  num_features: 4

PicoHead:
  conv_feat:
    name: PicoFeat
    feat_in: 96
    feat_out: 96
    num_convs: 2
    num_fpn_stride: 4
    norm_type: bn
    share_cls_reg: True
  fpn_stride: [8, 16, 32, 64]
  feat_in_chan: 96
  prior_prob: 0.01
  reg_max: 7
  cell_offset: 0.5
  loss_class:
    name: VarifocalLoss
    use_sigmoid: True
    iou_weighted: True
    loss_weight: 1.0
  loss_dfl:
    name: DistributionFocalLoss
    loss_weight: 0.25
  loss_bbox:
    name: GIoULoss
    loss_weight: 2.0
  assigner:
    name: SimOTAAssigner
    candidate_topk: 10
    iou_weight: 6
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 100
    score_threshold: 0.025
    nms_threshold: 0.6

LearningRate:
  base_lr: 0.4
  schedulers:
  - !CosineDecay
    max_epochs: 300
  - !LinearWarmup
    start_factor: 0.1
    steps: 300

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.00004
    type: L2

TrainDataset:
  !COCODataSet
    image_dir: ""
    anno_path: aic_coco_train_cocoformat.json
    dataset_dir: dataset
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

EvalDataset:
  !COCODataSet
    image_dir: val2017
    anno_path: annotations/instances_val2017.json
    dataset_dir: dataset/coco

TestDataset:
  !ImageFolder
    anno_path: annotations/instances_val2017.json

worker_num: 8
TrainReader:
  sample_transforms:
  - Decode: {}
  - RandomCrop: {}
  - RandomFlip: {prob: 0.5}
  - RandomDistort: {}
  batch_transforms:
  - BatchRandomResize: {target_size: [256, 288, 320, 352, 384], random_size: True, random_interp: True, keep_ratio: False}
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_size: 128
  shuffle: true
  drop_last: true
  collate_batch: false

EvalReader:
  sample_transforms:
  - Decode: {}
  - Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_transforms:
  - PadBatch: {pad_to_stride: 32}
  batch_size: 8
  shuffle: false

TestReader:
  inputs_def:
    image_shape: [1, 3, 320, 320]
  sample_transforms:
  - Decode: {}
  - Resize: {interp: 2, target_size: [320, 320], keep_ratio: False}
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_transforms:
  - PadBatch: {pad_to_stride: 32}
  batch_size: 1
  shuffle: false