lookup_table_op.h 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
24 25 26 27

namespace paddle {
namespace operators {

C
chengduoZH 已提交
28
using Tensor = framework::Tensor;
F
fengjiayi 已提交
29
using LoDTensor = framework::LoDTensor;
30
using SelectedRows = framework::SelectedRows;
31 32
using DDim = framework::DDim;

Q
qiaolongfei 已提交
33
constexpr int64_t kNoPadding = -1;
34 35

template <typename T>
Y
Yu Yang 已提交
36
class LookupTableKernel : public framework::OpKernel<T> {
37
 public:
38
  void Compute(const framework::ExecutionContext &context) const override {
39 40
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
41
    auto *table_var = context.InputVar("W");
42

43 44 45
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
C
chengduoZH 已提交
46

47 48 49 50
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];
51

52 53
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
54

C
chengduoZH 已提交
55
      for (int64_t i = 0; i < ids_numel; ++i) {
56 57 58 59 60 61 62 63
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], row_number);
          PADDLE_ENFORCE_GE(ids[i], 0);
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
        }
64
      }
65 66 67 68 69 70
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
71
      for (int64_t i = 0; i < ids_numel; ++i) {
72 73
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
74 75
        } else {
          PADDLE_ENFORCE_GE(ids[i], 0);
Y
fix ci  
Yancey1989 已提交
76 77
          auto id_index = table_t.Index(ids[i]);
          PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
78 79
          memcpy(output + i * row_width, table + id_index * row_width,
                 row_width * sizeof(T));
80 81
        }
      }
82 83 84 85 86
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
87
class LookupTableGradKernel : public framework::OpKernel<T> {
88
 public:
89
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
90 91 92 93 94 95 96 97
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
98 99 100
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
101 102
    }

103
    bool is_sparse = context.Attr<bool>("is_sparse");
104 105
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
106
    if (is_sparse) {
107 108 109
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
110

111
      auto *ids_data = ids->data<int64_t>();
112
      int64_t ids_num = ids->numel();
113

114
      framework::Vector<int64_t> new_rows;
115 116
      new_rows.reserve(ids_num);
      for (int64_t i = 0; i < ids_num; i++) {
117 118 119
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
120

121
      auto *d_table_value = d_table->mutable_value();
122
      d_table_value->Resize({ids_num, table_dim[1]});
123 124
      d_table_value->mutable_data<T>(context.GetPlace());

Q
qiaolongfei 已提交
125
      d_table->set_height(table_dim[0]);
126

127 128
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();
129 130 131 132

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
133 134 135
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
136

137
      auto *ids_data = ids->data<int64_t>();
138

Q
qiaolongfei 已提交
139
      int N = table_dim[0];
140 141
      int D = d_output->dims()[1];

142 143
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
144

145 146
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

147 148 149 150
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
151
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
152
        }
153 154 155 156 157 158 159
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle