conf_parser.h 10.1 KB
Newer Older
1 2 3 4 5 6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
7
// http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <yaml-cpp/yaml.h>
17 18 19 20 21 22 23
#include <iostream>
#include <vector>
#include <string>
#include <map>

namespace PaddleSolution {

24 25
class PaddleModelConfigPaser {
    std::map<std::string, int> _scaling_map;
26

27 28 29 30 31 32 33 34 35 36 37 38 39
 public:
    PaddleModelConfigPaser()
        :_class_num(0),
        _channels(0),
        _use_gpu(0),
        _batch_size(1),
        _target_short_size(0),
        _model_file_name("__model__"),
        _param_file_name("__params__"),
        _scaling_map{{"UNPADDING", 0},
                     {"RANGE_SCALING", 1}},
        _feeds_size(1),
    _coarsest_stride(1) {}
40

41
    ~PaddleModelConfigPaser() {}
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    void reset() {
        _crop_size.clear();
        _resize.clear();
        _mean.clear();
        _std.clear();
        _img_type.clear();
        _class_num = 0;
        _channels = 0;
        _use_gpu = 0;
        _target_short_size = 0;
        _batch_size = 1;
        _model_file_name = "__model__";
        _model_path = "./";
        _param_file_name = "__params__";
        _resize_type = 0;
        _resize_max_size = 0;
        _feeds_size = 1;
         _coarsest_stride = 1;
    }

    std::string process_parenthesis(const std::string& str) {
        if (str.size() < 2) {
            return str;
        }
        std::string nstr(str);
        if (str[0] == '(' && str.back() == ')') {
            nstr[0] = '[';
            nstr[str.size() - 1] = ']';
71
        }
72 73
        return nstr;
    }
74

75 76 77 78 79 80 81 82 83
    template <typename T>
    std::vector<T> parse_str_to_vec(const std::string& str) {
        std::vector<T> data;
        auto node = YAML::Load(str);
        for (const auto& item : node) {
            data.push_back(item.as<T>());
        }
        return data;
    }
84

85 86 87 88 89 90 91 92 93 94
    bool load_config(const std::string& conf_file) {
        reset();
        YAML::Node config;
        try {
            config = YAML::LoadFile(conf_file);
        } catch(...) {
            return false;
        }
        // 1. get resize
        if (config["DEPLOY"]["EVAL_CROP_SIZE"].IsDefined()) {
95 96
            auto str = config["DEPLOY"]["EVAL_CROP_SIZE"].as<std::string>();
            _resize = parse_str_to_vec<int>(process_parenthesis(str));
97 98 99 100 101 102 103 104 105 106 107
        } else {
            std::cerr << "Please set EVAL_CROP_SIZE: (xx, xx)" << std::endl;
            return false;
        }
        // 0. get crop_size
        if (config["DEPLOY"]["CROP_SIZE"].IsDefined()) {
            auto crop_str = config["DEPLOY"]["CROP_SIZE"].as<std::string>();
             _crop_size = parse_str_to_vec<int>(process_parenthesis(crop_str));
        } else {
            _crop_size = _resize;
        }
108

109 110
        // 2. get mean
        if (config["DEPLOY"]["MEAN"].IsDefined()) {
111 112 113
            for (const auto& item : config["DEPLOY"]["MEAN"]) {
                _mean.push_back(item.as<float>());
            }
114 115 116 117 118 119
        } else {
            std::cerr << "Please set MEAN: [xx, xx, xx]" << std::endl;
            return false;
        }
        // 3. get std
        if(config["DEPLOY"]["STD"].IsDefined()) {
120 121 122
            for (const auto& item : config["DEPLOY"]["STD"]) {
                _std.push_back(item.as<float>());
            }
123 124 125 126 127 128
        } else {
            std::cerr << "Please set STD: [xx, xx, xx]" << std::endl;
            return false;
        }
        // 4. get image type
        if (config["DEPLOY"]["IMAGE_TYPE"].IsDefined()) {
129
            _img_type = config["DEPLOY"]["IMAGE_TYPE"].as<std::string>();
130 131 132 133 134 135
        } else {
            std::cerr << "Please set IMAGE_TYPE: \"rgb\" or \"rgba\"" << std::endl;
            return false;
        }
        // 5. get class number
        if (config["DEPLOY"]["NUM_CLASSES"].IsDefined()) {
136
            _class_num = config["DEPLOY"]["NUM_CLASSES"].as<int>();
137 138 139 140 141 142
        } else {
            std::cerr << "Please set NUM_CLASSES: x" << std::endl;
            return false;
        }
        // 7. set model path
        if (config["DEPLOY"]["MODEL_PATH"].IsDefined()) {
143
            _model_path = config["DEPLOY"]["MODEL_PATH"].as<std::string>();
144 145 146 147 148 149
        } else {
            std::cerr << "Please set MODEL_PATH: \"/path/to/model_dir\"" << std::endl;
            return false;
        }
        // 8. get model file_name
        if (config["DEPLOY"]["MODEL_FILENAME"].IsDefined()) {
150
            _model_file_name = config["DEPLOY"]["MODEL_FILENAME"].as<std::string>();
151 152 153 154 155 156 157 158 159 160 161 162
        } else {
            _model_file_name = "__model__";
        }
        // 9. get model param file name
        if (config["DEPLOY"]["PARAMS_FILENAME"].IsDefined()) {
            _param_file_name
                = config["DEPLOY"]["PARAMS_FILENAME"].as<std::string>();
        } else {
            _param_file_name = "__params__";
        }
        // 10. get pre_processor
        if (config["DEPLOY"]["PRE_PROCESSOR"].IsDefined()) {
163
            _pre_processor = config["DEPLOY"]["PRE_PROCESSOR"].as<std::string>();
164 165 166 167 168 169
        } else {
            std::cerr << "Please set PRE_PROCESSOR: \"DetectionPreProcessor\"" << std::endl;
            return false;
        }
        // 11. use_gpu
        if (config["DEPLOY"]["USE_GPU"].IsDefined()) { 
170
            _use_gpu = config["DEPLOY"]["USE_GPU"].as<int>();
171 172 173 174 175
        } else {
            _use_gpu = 0;
        }
        // 12. predictor_mode
        if (config["DEPLOY"]["PREDICTOR_MODE"].IsDefined()) {
176
            _predictor_mode = config["DEPLOY"]["PREDICTOR_MODE"].as<std::string>();
177 178 179 180 181 182
        } else {
            std::cerr << "Please set PREDICTOR_MODE: \"NATIVE\" or \"ANALYSIS\""  << std::endl;
            return false;
        }
        // 13. batch_size
        if (config["DEPLOY"]["BATCH_SIZE"].IsDefined()) {
183
            _batch_size = config["DEPLOY"]["BATCH_SIZE"].as<int>();
184 185 186 187 188
        } else {
            _batch_size = 1;
        }
        // 14. channels
        if (config["DEPLOY"]["CHANNELS"].IsDefined()) {
189
            _channels = config["DEPLOY"]["CHANNELS"].as<int>();
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        } else {
            std::cerr << "Please set CHANNELS: x"  << std::endl;
            return false;
        }
        // 15. target_short_size
        if (config["DEPLOY"]["TARGET_SHORT_SIZE"].IsDefined()) {
           _target_short_size = config["DEPLOY"]["TARGET_SHORT_SIZE"].as<int>();
        }
        // 16.resize_type
        if (config["DEPLOY"]["RESIZE_TYPE"].IsDefined() &&
            _scaling_map.find(config["DEPLOY"]["RESIZE_TYPE"].as<std::string>()) != _scaling_map.end()) {
            _resize_type = _scaling_map[config["DEPLOY"]["RESIZE_TYPE"].as<std::string>()];
        } else {
            _resize_type = 0;
        }
        // 17.resize_max_size
        if (config["DEPLOY"]["RESIZE_MAX_SIZE"].IsDefined()) {
            _resize_max_size = config["DEPLOY"]["RESIZE_MAX_SIZE"].as<int>();
208
        }
209 210 211 212 213 214 215 216 217 218
        // 18.feeds_size
        if (config["DEPLOY"]["FEEDS_SIZE"].IsDefined()) {
            _feeds_size = config["DEPLOY"]["FEEDS_SIZE"].as<int>();
        }
        // 19. coarsest_stride
        if (config["DEPLOY"]["COARSEST_STRIDE"].IsDefined()) {
            _coarsest_stride = config["DEPLOY"]["COARSEST_STRIDE"].as<int>();
        }
        return true;
    }
219

220 221 222
    void debug() const {
        std::cout << "SCALE_RESIZE: (" << _resize[0] << ", "
                  << _resize[1] << ")" << std::endl;
223

224 225 226 227 228 229
        std::cout << "MEAN: [";
        for (int i = 0; i < _mean.size(); ++i) {
            if (i != _mean.size() - 1) {
                std::cout << _mean[i] << ", ";
            } else {
                std::cout << _mean[i];
230
            }
231 232
        }
        std::cout << "]" << std::endl;
233

234 235 236 237 238 239
        std::cout << "STD: [";
        for (int i = 0; i < _std.size(); ++i) {
            if (i != _std.size() - 1) {
                std::cout << _std[i] << ", ";
            } else {
                std::cout << _std[i];
240
            }
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        }
        std::cout << "]" << std::endl;
        std::cout << "DEPLOY.TARGET_SHORT_SIZE: " << _target_short_size
                  << std::endl;
        std::cout << "DEPLOY.IMAGE_TYPE: " << _img_type << std::endl;
        std::cout << "DEPLOY.NUM_CLASSES: " << _class_num << std::endl;
        std::cout << "DEPLOY.CHANNELS: " << _channels << std::endl;
        std::cout << "DEPLOY.MODEL_PATH: " << _model_path << std::endl;
        std::cout << "DEPLOY.MODEL_FILENAME: " << _model_file_name
                  << std::endl;
        std::cout << "DEPLOY.PARAMS_FILENAME: " << _param_file_name
                  << std::endl;
        std::cout << "DEPLOY.PRE_PROCESSOR: " << _pre_processor << std::endl;
        std::cout << "DEPLOY.USE_GPU: " << _use_gpu << std::endl;
        std::cout << "DEPLOY.PREDICTOR_MODE: " << _predictor_mode << std::endl;
        std::cout << "DEPLOY.BATCH_SIZE: " << _batch_size << std::endl;
    }
    // DEPLOY.COARSEST_STRIDE
    int _coarsest_stride;
    // DEPLOY.FEEDS_SIZE
    int _feeds_size;
    // DEPLOY.RESIZE_TYPE  0:unpadding 1:rangescaling  Default:0
    int _resize_type;
    // DEPLOY.RESIZE_MAX_SIZE
    int _resize_max_size;
    // DEPLOY.CROP_SIZE
    std::vector<int> _crop_size;
    // DEPLOY.SCALE_RESIZE
    std::vector<int> _resize;
    // DEPLOY.MEAN
    std::vector<float> _mean;
    // DEPLOY.STD
    std::vector<float> _std;
    // DEPLOY.IMAGE_TYPE
    std::string _img_type;
    // DEPLOY.TARGET_SHORT_SIZE
    int _target_short_size;
    // DEPLOY.NUM_CLASSES
    int _class_num;
    // DEPLOY.CHANNELS
    int _channels;
    // DEPLOY.MODEL_PATH
    std::string _model_path;
    // DEPLOY.MODEL_FILENAME
    std::string _model_file_name;
    // DEPLOY.PARAMS_FILENAME
    std::string _param_file_name;
    // DEPLOY.PRE_PROCESSOR
    std::string _pre_processor;
    // DEPLOY.USE_GPU
    int _use_gpu;
    // DEPLOY.PREDICTOR_MODE
    std::string _predictor_mode;
    // DEPLOY.BATCH_SIZE
    int _batch_size;
};
}  // namespace PaddleSolution