optimizer.py 23.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
Y
Yu Yang 已提交
20 21
from framework import program_guard
import unique_name
22 23 24
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
25
from clip import append_gradient_clip_ops, error_clip_callback
26

27 28 29
__all__ = [
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Adadelta'
]
Q
Qiao Longfei 已提交
30 31 32 33 34 35


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
36 37
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
38 39
    """

Y
Yu Yang 已提交
40
    def __init__(self, learning_rate, regularization=None):
41 42
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
43
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
44
        self.regularization = regularization
45 46 47
        self._learning_rate = learning_rate
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
48
        self._learning_rate_map = dict()
49 50 51
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
52 53 54 55 56
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
57
        self.helper = None
Q
Qiao Longfei 已提交
58

Q
Qiao Longfei 已提交
59
    def _create_global_learning_rate(self):
60
        lr = self.global_learning_rate()
Q
Qiao Longfei 已提交
61

62 63 64 65
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
66
                raise TypeError(
67 68
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
69

70 71 72 73 74 75 76 77 78 79
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
            dtype='float32',
            persistable=True)

    def global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
80 81 82 83
        """
        get global decayed learning rate
        :return:
        """
84 85
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
86
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
87

Q
Qiao Longfei 已提交
88 89 90 91 92
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

93 94 95 96
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
97
        return self.global_learning_rate() * param_lr
98 99 100 101 102 103 104

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
105
        """
106 107
        pass

108 109 110 111 112 113 114 115 116 117 118 119 120
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
121
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
122 123 124 125 126 127 128 129 130 131 132
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
133
            raise Exception("Accumulator {} already exists for parameter {}".
134
                            format(name, param.name))
Q
Qiao Longfei 已提交
135 136 137

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
138
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
139
            persistable=True,
F
fengjiayi 已提交
140
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
141 142 143
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
144
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
145
        self._accumulators[name][param.name] = var
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Q
Qiao Longfei 已提交
163 164 165
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
166
                                 startup_program=None):
Q
Qiao Longfei 已提交
167 168 169 170 171 172 173
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
174 175 176 177
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
178
          :param startup_program:
Q
Qiao Longfei 已提交
179
        """
180 181 182 183 184
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
185
        # for parameters and extend _finish_update method to add custom ops.
186 187

        # Create any accumulators
Q
Qiao Longfei 已提交
188
        program = loss.block.program
189
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
190 191
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
192 193 194
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
195
            self._create_global_learning_rate()
196 197 198 199 200 201 202 203 204 205 206

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
Y
Yancey1989 已提交
207
            self._finish_update(loss.block)
208

Y
Yancey1989 已提交
209 210
            end = len(global_block.ops)
            return global_block.slice_ops(start, end)
Q
Qiao Longfei 已提交
211

Q
Qiao Longfei 已提交
212 213
    def minimize(self,
                 loss,
214
                 startup_program=None,
Q
Qiao Longfei 已提交
215 216
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
217 218
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
219
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
220 221
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
222
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
223
                                       [error_clip_callback])
Y
Yu Yang 已提交
224 225 226

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
227
        # Add regularization if any
D
dzhwinter 已提交
228 229
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
230

Q
Qiao Longfei 已提交
231
        optimize_ops = self.create_optimization_pass(params_grads, loss,
232
                                                     startup_program)
T
typhoonzero 已提交
233
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
234 235 236 237 238 239


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
240
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
241
        assert learning_rate is not None
Q
Qiao Longfei 已提交
242 243
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
244 245
        self.type = "sgd"

246 247
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
248

Q
Qiao Longfei 已提交
249 250 251 252 253 254
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
255
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
256
            },
257
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
258 259

        return sgd_op
260 261 262 263 264 265 266


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
267
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
268 269
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
270 271
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
272 273
        self.type = "momentum"
        self._momentum = momentum
274
        self._use_nesterov = bool(use_nesterov)
275 276 277 278 279

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
280
            self._add_accumulator(self._velocity_acc_str, p)
281 282 283 284 285 286 287 288 289 290 291 292 293

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
294
                "LearningRate": self._create_param_lr(param_and_grad)
295 296 297 298 299
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
300
            attrs={"mu": self._momentum,
301
                   "use_nesterov": self._use_nesterov})
302 303

        return momentum_op
304 305 306 307 308 309 310


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
311
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
312 313
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
314 315
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
316 317 318 319 320 321 322
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
323
            self._add_accumulator(self._moment_acc_str, p)
324 325 326 327 328 329 330

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

331
        # Create the adagrad optimizer op
332 333 334 335 336 337
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
338
                "LearningRate": self._create_param_lr(param_and_grad)
339 340 341 342 343 344
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
345 346 347 348 349 350 351 352 353 354 355 356


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
357
                 epsilon=1e-8,
D
dzhwinter 已提交
358
                 **kwargs):
359 360 361 362
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
363 364
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
365 366 367 368 369 370 371 372
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
373
        main_block = block.program.global_block()
374 375
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
376
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
377
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
378 379 380 381 382
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
383
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
384 385

        self._beta2_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
386
            name=unique_name.generate('beta2_pow_acc'),
Q
Qiao Longfei 已提交
387 388 389 390 391 392
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
393
            self._beta2_pow_acc, initializer=Constant(self._beta2))
394 395 396

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
397 398
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
399 400 401 402 403 404 405 406

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
407
        # create the adam optimize op
408 409 410 411 412
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
413
                "LearningRate": self._create_param_lr(param_and_grad),
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
436 437
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
438 439 440 441 442
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
443
        scale_beta2 = main_block.append_op(
444 445 446 447 448 449
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
450 451 452 453 454 455 456 457 458 459 460 461


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
462
                 epsilon=1e-8,
D
dzhwinter 已提交
463
                 **kwargs):
464 465 466 467
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
468 469
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
470 471 472 473 474 475 476 477
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
478
        self._beta1_pow_acc = self.helper.create_global_variable(
Y
Yu Yang 已提交
479
            name=unique_name.generate('beta1_pow_acc'),
Q
Qiao Longfei 已提交
480 481 482 483 484
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
485
            self._beta1_pow_acc, initializer=Constant(self._beta1))
486 487 488

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
489 490
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
491 492 493 494 495 496 497 498 499 500 501 502 503

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
504
                "LearningRate": self._create_param_lr(param_and_grad),
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
526 527
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
528 529 530 531 532 533
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
534 535 536 537 538 539 540


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
541
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
542 543 544 545
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
546 547
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
578 579


580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
class AdadeltaOptimizer(Optimizer):
    """Simple Adadelta optimizer with average squared grad state and
    average squared update state.
    """
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

    def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, **kwargs):
        assert learning_rate is not None
        assert epsilon is not None
        assert rho is not None
        super(AdadeltaOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


632 633 634 635 636 637 638 639 640 641 642 643 644 645
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
646
Adadelta = AdadeltaOptimizer