fc_op.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"

namespace paddle {
namespace operators {

class FCOp : public NetOp {
 public:
  FCOp(const std::string &type, const framework::VariableNameMap &inputs,
       const framework::VariableNameMap &outputs,
       const framework::AttributeMap &attrs)
      : NetOp(type, inputs, outputs, attrs) {
L
Liu Yiqun 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    auto x = Inputs("X");
    auto w = Inputs("W");
    PADDLE_ENFORCE_EQ(
        x.size(), w.size(),
        "The size of inputs X(%d) should be the same as that of weights W(%d).",
        x.size(), w.size());

    int n = x.size();
    PADDLE_ENFORCE_GE(n, 1,
                      "The size of inputs X(%d) should be no less than 1.", n);

    // mul_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
    AppendOp(
        framework::OpRegistry::CreateOp("mul", {{"X", {x[0]}}, {"W", {w[0]}}},
                                        {{"Out", {Output("mul_out")}}}, {}));

    for (int i = 1; i < n; i++) {
      // mul_out = mul_out + X[i] * W[i]
      AppendOp(
          framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}},
                                          {{"Out", {Output("add_out")}}}, {}));
      AppendOp(framework::OpRegistry::CreateOp(
          "add", {{"X", {Output("mul_out")}}, {"Y", {Output("add_out")}}},
          {{"Out", {Output("mul_out")}}}, {}));
    }
52

53
    auto b = Input("b");
L
Liu Yiqun 已提交
54
    std::string add_out = "mul_out";
55
    if (b != framework::kEmptyVarName) {
56
      // add_out = mul_out + b
57 58
      AppendOp(framework::OpRegistry::CreateOp(
          "rowwise_add", {{"X", {Output("mul_out")}}, {"b", {Input("b")}}},
59
          {{"Out", {Output("add_out")}}}, {}));
L
Liu Yiqun 已提交
60
      add_out = "add_out";
61
    } else {
L
Liu Yiqun 已提交
62 63
      if (Output("add_out") != framework::kEmptyVarName) {
        this->Rename(Output("add_out"), framework::kEmptyVarName);
64
      }
65 66
    }

L
Liu Yiqun 已提交
67 68 69
    auto activation = Attr<std::string>("activation");
    AppendOp(framework::OpRegistry::CreateOp(
        activation, {{"X", {Output(add_out)}}}, {{"Y", {Output("Y")}}}, {}));
70 71 72 73 74 75 76 77
    CompleteAddOp(false);
  }
};

class FCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
L
Liu Yiqun 已提交
78 79 80
    AddInput("X", "The 2-D input matrix of FC operator.").AsDuplicable();
    AddInput("W", "The 2-D weight matrix of FC operator.").AsDuplicable();
    AddInput("b", "The 1-D bias vector of FC operator");
81

L
Liu Yiqun 已提交
82
    AddOutput("Y", "The activated output matrix of FC operator");
83 84 85
    AddOutput("mul_out", "The non-actived output of FC operator, X * W")
        .AsIntermediate();
    AddOutput("add_out", "The non-actived output of FC operator, X * W + b")
86 87 88 89 90 91 92 93 94 95 96 97 98 99
        .AsIntermediate();
    AddAttr<std::string>("activation", "The activation type of FC operator.")
        .SetDefault("identity")
        .InEnum({"identity", "sigmoid", "softmax"});

    AddComment(R"DOC(
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
in Convolutional Neural Networks. Neurons in a fully connected layer have
full connections to all activations in the previous layer.
It computes an inner product of a set of
learned weights with a matrix multiplication followed by a bias offset
(optionally).

Equation:
L
Liu Yiqun 已提交
100
  Y = Act(sum_n{X_i * W_i} + b)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

where X_i is a 2D matrix of size (M x K), usually M is the minibatch size and
K is the number of features. W_i is also a 2D matrix of size (K x N),
where N means the number of neurons in the fully connected layer.
b is a 1D vector of size N. Thus, the output Y is a 2D matrix of size (M x N).
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.

  The config api is `paddle.v2.layer.fc`.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

USE_OP(mul);
USE_OP(rowwise_add);
USE_NO_KERNEL_OP(identity);
USE_OP(sigmoid);
USE_OP(softmax);

namespace ops = paddle::operators;
123
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);