reduce_sum_op.h 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/op_bridge.h"
#include "paddle/fluid/platform/ngraph_helper.h"

namespace paddle {
namespace operators {
namespace ngraphs {

void BuildReduceSumNode(
    const std::shared_ptr<paddle::framework::OperatorBase> &op,
    std::shared_ptr<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
        ngb_node_map) {
  auto input = paddle::platform::GetInputNode(op, "X", ngb_node_map);
  auto op_attrs = paddle::framework::AttrReader(op->Attrs());
  bool reduce_all = op_attrs.Get<bool>("reduce_all");
  bool keep_dim = op_attrs.Get<bool>("keep_dim");
  std::vector<int> dim = op_attrs.Get<std::vector<int>>("dim");
  auto input_shape = input->get_shape();
  ngraph::AxisSet axes;
  if (reduce_all == true) {
    for (size_t i = 0; i < input_shape.size(); ++i) {
      axes.insert(i);
    }
  } else {
    for (auto &i : dim) {
      if (i < 0) {
        axes.insert(input_shape.size() + i);
      } else {
        axes.insert(i);
      }
    }
  }
  std::shared_ptr<ngraph::Node> reduce_sum =
      std::make_shared<ngraph::op::Sum>(input, axes);

  if (keep_dim == true) {
    std::vector<size_t> dim_shape;
    std::copy(input_shape.begin(), input_shape.end(),
              std::back_inserter(dim_shape));
    for (auto &i : dim) {
      if (i < 0) {
        i = input_shape.size() + i;
      }
      dim_shape[i] = 1;
    }

    std::vector<size_t> axis_vector(input_shape.size() - dim.size());
    std::iota(axis_vector.begin(), axis_vector.end(), 0);

    auto reduce_sum_dim = std::make_shared<ngraph::op::Reshape>(
        reduce_sum, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape));

    paddle::platform::SetOutputNode(op, "Out", reduce_sum_dim, ngb_node_map);
  } else {
    if (reduce_sum->get_shape() == ngraph::Shape{}) {
      reduce_sum = paddle::platform::NgReshaper(reduce_sum, ngraph::Shape{1});
    }
    paddle::platform::SetOutputNode(op, "Out", reduce_sum, ngb_node_map);
  }
}

void BuildReduceSumGradNode(
    const std::shared_ptr<paddle::framework::OperatorBase> &op,
    std::shared_ptr<
        std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
        ngb_node_map) {
  auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
  auto og = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
  auto op_attrs = paddle::framework::AttrReader(op->Attrs());
  std::vector<int> dim = op_attrs.Get<std::vector<int>>("dim");
  bool reduce_all = op_attrs.Get<bool>("reduce_all");
  bool keep_dim = op_attrs.Get<bool>("keep_dim");

  auto og_shape = og->get_shape();
  auto x_shape = x->get_shape();
  float x_size = std::accumulate(std::begin(x_shape), std::end(x_shape), 1,
                                 std::multiplies<float>());
  float og_size = std::accumulate(std::begin(og_shape), std::end(og_shape), 1,
                                  std::multiplies<float>());
  ngraph::AxisSet axes;

  if (reduce_all == true) {
    for (size_t i = 0; i < x_shape.size(); i++) {
      axes.insert(i);
    }
  } else {
    for (auto &i : dim) {
      if (i < 0) {
        axes.insert(x_shape.size() + i);
      } else {
        axes.insert(i);
      }
    }
  }
  std::vector<size_t> axis_vector(og_shape.size());
  std::iota(axis_vector.begin(), axis_vector.end(), 0);
  std::vector<size_t> dim_shape;

  for (size_t i = 0; i < x_shape.size(); i++) {
    if (std::find(dim.begin(), dim.end(), i) == dim.end() &&
        std::find(dim.begin(), dim.end(), i - x_shape.size()) == dim.end()) {
      dim_shape.push_back(x_shape[i]);
    }
  }

  if (keep_dim == true) {
    // reshape
    if (x_size == og_size) {
      paddle::platform::SetOutputNode(op, "X@GRAD", og, ngb_node_map);
      return;
    }
    auto og_dim = std::make_shared<ngraph::op::Reshape>(
        og, ngraph::AxisVector(axis_vector), ngraph::Shape(dim_shape));
    auto result =
        std::make_shared<ngraph::op::Broadcast>(og_dim, x_shape, axes);
    paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map);

  } else {
    if (x_size == og_size) {
      auto og_dim = std::make_shared<ngraph::op::Reshape>(
          og, ngraph::AxisVector(axis_vector), x_shape);
      paddle::platform::SetOutputNode(op, "X@GRAD", og_dim, ngb_node_map);
    } else {
      if (og->get_shape().size() == 1 && og->get_shape()[0] == 1) {
        og = std::make_shared<ngraph::op::Reshape>(og, ngraph::AxisVector{0},
                                                   ngraph::Shape{});
      }
      auto result = std::make_shared<ngraph::op::Broadcast>(og, x_shape, axes);
      paddle::platform::SetOutputNode(op, "X@GRAD", result, ngb_node_map);
    }
  }
}
}  // namespace ngraphs
}  // namespace operators
}  // namespace paddle

REGISTER_NG_OP(reduce_sum, BuildReduceSumNode);
REGISTER_NG_OP(reduce_sum_grad, BuildReduceSumGradNode);