eval.py 4.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

# ignore numba warning
import warnings
warnings.filterwarnings('ignore')
import random
import numpy as np
import paddle
import time

from paddle.distributed import ParallelEnv
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.utils.eval_utils import get_infer_results, eval_results
from ppdet.utils.checkpoint import load_weight

from ppdet.utils.logger import setup_logger
logger = setup_logger('eval')


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")

    parser.add_argument(
        '--json_eval', action='store_true', default=False, help='')

    parser.add_argument(
        '--use_gpu', action='store_true', default=False, help='')

    args = parser.parse_args()
    return args


def run(FLAGS, cfg, place):

    # Model
    main_arch = cfg.architecture
    model = create(cfg.architecture)

    # Init Model
    load_weight(model, cfg.weights)

    # Data Reader
    dataset = cfg.EvalDataset
    eval_loader = create('EvalReader')(dataset, cfg['worker_num'])
    extra_key = ['im_shape', 'scale_factor', 'im_id']
    if cfg.metric == 'VOC':
        extra_key += ['gt_bbox', 'gt_class', 'difficult']

    # Run Eval
    outs_res = []
    sample_num = 0
    start_time = time.time()
    for iter_id, data in enumerate(eval_loader):
        # forward
        model.eval()
84
        outs = model(data)
Q
qingqing01 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        for key in extra_key:
            outs[key] = data[key]
        for key, value in outs.items():
            outs[key] = value.numpy()

        if 'mask' in outs and 'bbox' in outs:
            mask_resolution = model.mask_post_process.mask_resolution
            from ppdet.py_op.post_process import mask_post_process
            outs['mask'] = mask_post_process(
                outs, outs['im_shape'], outs['scale_factor'], mask_resolution)

        outs_res.append(outs)
        # log
        sample_num += outs['im_id'].shape[0]
        if iter_id % 100 == 0:
            logger.info("Eval iter: {}".format(iter_id))

    cost_time = time.time() - start_time
    logger.info('Total sample number: {}, averge FPS: {}'.format(
        sample_num, sample_num / cost_time))

    eval_type = []
    if 'bbox' in outs:
        eval_type.append('bbox')
    if 'mask' in outs:
        eval_type.append('mask')
    # Metric
    # TODO: support other metric
    with_background = cfg.with_background
    use_default_label = dataset.use_default_label
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import get_category_info
        clsid2catid, catid2name = get_category_info(
            dataset.get_anno(), with_background, use_default_label)

        infer_res = get_infer_results(outs_res, eval_type, clsid2catid)

    elif cfg.metric == 'VOC':
        from ppdet.utils.voc_eval import get_category_info
        clsid2catid, catid2name = get_category_info(
            dataset.get_label_list(), with_background, use_default_label)
        infer_res = outs_res

    eval_results(infer_res, cfg.metric, dataset)


def main():
    FLAGS = parse_args()

    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_version()

    place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu'
    place = paddle.set_device(place)
    run(FLAGS, cfg, place)


if __name__ == '__main__':
    main()