dataset.py 5.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
import numpy as np
from collections import OrderedDict
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
from paddle.io import Dataset
from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path
import copy


@serializable
class DetDataset(Dataset):
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1,
                 use_default_label=None,
                 **kwargs):
        super(DetDataset, self).__init__()
        self.dataset_dir = dataset_dir if dataset_dir is not None else ''
        self.anno_path = anno_path
        self.image_dir = image_dir if image_dir is not None else ''
        self.data_fields = data_fields
        self.sample_num = sample_num
        self.use_default_label = use_default_label
        self._epoch = 0

    def __len__(self, ):
        return len(self.roidbs)

    def __getitem__(self, idx):
        # data batch
        roidb = copy.deepcopy(self.roidbs[idx])
        if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
            n = len(self.roidbs)
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
            n = len(self.roidbs)
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
            n = len(self.roidbs)
            roidb = [roidb, ] + [
                copy.deepcopy(self.roidbs[np.random.randint(n)])
                for _ in range(3)
            ]

        return self.transform(roidb)

    def set_kwargs(self, **kwargs):
        self.mixup_epoch = kwargs.get('mixup_epoch', -1)
        self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
        self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)

    def set_transform(self, transform):
        self.transform = transform

    def set_epoch(self, epoch_id):
        self._epoch = epoch_id

    def parse_dataset(self, with_background=True):
        raise NotImplemented(
            "Need to implement parse_dataset method of Dataset")

    def get_anno(self):
        if self.anno_path is None:
            return
        return os.path.join(self.dataset_dir, self.anno_path)


def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
    return f.lower().endswith(extensions)


def _make_dataset(dir):
    dir = os.path.expanduser(dir)
    if not os.path.isdir(d):
        raise ('{} should be a dir'.format(dir))
    images = []
    for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
        for fname in sorted(fnames):
            path = os.path.join(root, fname)
            if is_valid_file(path):
                images.append(path)
    return images


@register
@serializable
class ImageFolder(DetDataset):
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 sample_num=-1,
                 use_default_label=None,
                 **kwargs):
        super(ImageFolder, self).__init__(dataset_dir, image_dir, anno_path,
                                          sample_num, use_default_label)
        self._imid2path = {}
        self.roidbs = None

    def parse_dataset(self, with_background=True):
        if not self.roidbs:
            self.roidbs = self._load_images()

    def _parse(self):
        image_dir = self.image_dir
        if not isinstance(image_dir, Sequence):
            image_dir = [image_dir]
        images = []
        for im_dir in image_dir:
            if os.path.isdir(im_dir):
                im_dir = os.path.join(self.dataset_dir, im_dir)
                images.extend(_make_dataset(im_dir))
            elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
                images.append(im_dir)
        return images

    def _load_images(self):
        images = self._parse()
        ct = 0
        records = []
        for image in images:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
            if self.sample_num > 0 and ct >= self.sample_num:
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records

    def get_imid2path(self):
        return self._imid2path

    def set_images(self, images):
        self.image_dir = images
        self.roidbs = self._load_images()