random_op.cc 3.0 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dongzhihong 已提交
15 16 17 18 19
#include "paddle/operators/random_op.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
D
dongzhihong 已提交
20

D
dongzhihong 已提交
21 22 23 24 25 26 27 28 29 30
// using paddle::platform::CPUPlace;
// template <paddle::platform::CPUPlace, typename T, typename DeviceContext>
template <typename T>
bool Gaussian(platform::CPUDeviceContext& ctx,
              framework::Tensor* output,
              const int size,
              const T& mean,
              const T& std,
              const T& seed) {
  auto g = ctx.RandGenerator(seed);
D
dongzhihong 已提交
31 32 33 34 35 36 37
  std::normal_distribution<double> distribution(mean, std);
  for (int i = 0; i < size; ++i) {
    output[i] = distribution(g());
  }
  return true;
}

D
dongzhihong 已提交
38 39 40 41 42 43 44 45 46
class RandomOp : public framework::OperatorWithKernel {
protected:
  void InferShape(
      const std::vector<const framework::Tensor*>& inputs,
      const std::vector<framework::Tensor*>& outputs) const override {
    PADDLE_ENFORCE(inputs.size() == 0, "Input size of RandomOp must be zero.");
    PADDLE_ENFORCE(outputs.size() == 1, "Output size of RandomOp must be one.");
    PADDLE_ENFORCE(inputs[0] != nullptr && outputs[0] != nullptr,
                   "Inputs/Outputs of RandomOp must all be set.");
D
dongzhihong 已提交
47 48 49
    outputs[0]->Resize(
        framework::make_ddim(this->GetAttr<std::vector<int>>("shape")));
    // outputs[0]->set_dims(context.op_.attrs_.at("shape"));
D
dongzhihong 已提交
50 51 52 53 54 55 56
  }
};

class RandomOpMaker : public framework::OpProtoAndCheckerMaker {
public:
  RandomOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
D
dongzhihong 已提交
57
    AddAttr<std::vector<int>>("shape", "The shape of matrix to be randomized");
D
dongzhihong 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    AddAttr<float>("seed", "random seed generator.").SetDefault(1337);
    AddAttr<float>("mean", "mean value of random.").SetDefault(.0);
    AddAttr<float>("std", "minimum value of random value")
        .SetDefault(1.0)
        .LargerThan(.0);
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
Random Operator fill a matrix in normal distribution.
The eqution : Out = Random(Shape=(d0, d1, ...), Dtype, mean, std)
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP(random_op,
            paddle::operators::RandomOp,
            paddle::operators::RandomOpMaker);

typedef paddle::operators::RandomOpKernel<paddle::platform::CPUPlace, float>
    RandomOpKernel_CPU_float;
REGISTER_OP_CPU_KERNEL(random_op, RandomOpKernel_CPU_float);