README.md 7.4 KB
Newer Older
G
George Ni 已提交
1 2
English | [简体中文](README_cn.md)

3
# DeepSORT (Deep Cosine Metric Learning for Person Re-identification)
G
George Ni 已提交
4 5 6 7 8

## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
G
George Ni 已提交
9
- [Citations](#Citations)
G
George Ni 已提交
10 11

## Introduction
G
George Ni 已提交
12
[DeepSORT](https://arxiv.org/abs/1812.00442) (Deep Cosine Metric Learning SORT) extends the original [SORT](https://arxiv.org/abs/1703.07402) (Simple Online and Realtime Tracking) algorithm, it adds a CNN model to extract features in image of human part bounded by a detector. It integrates appearance information based on a deep appearance descriptor, and assigns and updates the detected targets to the existing corresponding trajectories like ReID task. The detection bboxes result required by DeepSORT can be generated by any detection model, and then the saved detection result file can be loaded for tracking. Here we select the `PCB + Pyramid ResNet101` model provided by [PaddleClas](https://github.com/PaddlePaddle/PaddleClas) as the ReID model.
G
George Ni 已提交
13 14 15

## Model Zoo

16
### DeepSORT Results on MOT-16 Training Set
G
George Ni 已提交
17

18 19 20 21
| backbone  | input shape | MOTA | IDF1 |  IDS  |   FP  |   FN  |   FPS  | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 |  72.2  |  60.5  | 998  |  8054  | 21644 |  - | [det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 |  68.3  |  56.5  | 1722 |  17337 | 15890 |  - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
G
George Ni 已提交
22

23
### DeepSORT Results on MOT-16 Test Set
G
George Ni 已提交
24

25 26 27 28
| backbone  | input shape | MOTA | IDF1 |  IDS  |   FP  |   FN  |   FPS  | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 |  64.1  |  53.0  | 1024  |  12457  | 51919 |  - |[det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 |  61.2  |  48.5  | 1799  |  25796  | 43232 |  - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams)  |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
G
George Ni 已提交
29 30

**Notes:**
31 32 33
DeepSORT does not need to train on MOT dataset, only used for evaluation. Now it supports two evaluation methods.

- 1.Load the result file and the ReID model. Before DeepSORT evaluation, you should get detection results by a detection model first, and then prepare them like this:
G
George Ni 已提交
34 35 36 37 38 39 40 41 42 43
```
det_results_dir
   |——————MOT16-02.txt
   |——————MOT16-04.txt
   |——————MOT16-05.txt
   |——————MOT16-09.txt
   |——————MOT16-10.txt
   |——————MOT16-11.txt
   |——————MOT16-13.txt
```
44
For MOT16 dataset, you can download a detection result after matching called det_results_dir.zip provided by PaddleDetection:
G
George Ni 已提交
45 46 47
```
wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip
```
48
If you use a stronger detection model, you can get better results. Each txt is the detection result of all the pictures extracted from each video, and each line describes a bounding box with the following format:
G
George Ni 已提交
49
```
50
[frame_id],[bb_left],[bb_top],[width],[height],[conf]
G
George Ni 已提交
51
```
52 53 54 55 56
- `frame_id` is the frame number of the image
- `bb_left` is the X coordinate of the left bound of the object box
- `bb_top` is the Y coordinate of the upper bound of the object box
- `width,height` is the pixel width and height
- `conf` is the object score with default value `1` (the results had been filtered out according to the detection score threshold)
G
George Ni 已提交
57

58 59
- 2.Load the detection model and the ReID model at the same time. Here, the JDE version of YOLOv3 is selected. For more detail of configuration, see `configs/mot/deepsort/_base_/deepsort_yolov3_darknet53_pcb_pyramid_r101.yml`.

G
George Ni 已提交
60 61
## Getting Start

G
George Ni 已提交
62
### 1. Evaluation
G
George Ni 已提交
63 64

```bash
65
# Load the result file and ReID model to get the tracking result
66
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml --det_results_dir {your detection results}
67 68 69 70 71 72 73 74 75 76 77 78

# Load the detection model and ReID model to get the tracking results
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_yolov3_pcb_pyramid_r101.yml
```

### 2. Inference

Inference a vidoe on single GPU with following command:

```bash
# inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/deepsort/deepsort_yolov3_pcb_pyramid_r101.yml --video_file={your video name}.mp4  --save_videos
G
George Ni 已提交
79
```
80 81
**Notes:**
 Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
G
George Ni 已提交
82

G
George Ni 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
### 3. Export model

```bash
1.export detection model
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/jde_yolov3_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams

2.export ReID model
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/deepsort_yolov3_pcb_pyramid_r101.yml -o reid_weights=https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams
or
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml -o reid_weights=https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams
```

### 4. Using exported model for python inference

```bash
python deploy/python/mot_reid_infer.py --model_dir=output_inference/jde_yolov3_darknet53_30e_1088x608/ --reid_model_dir=output_inference/deepsort_yolov3_pcb_pyramid_r101/ --video_file={your video name}.mp4 --device=GPU --save_mot_txts
```
**Notes:**
The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add `--save_mot_txts` to save the txt result file, or `--save_images` to save the visualization images.

G
George Ni 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
## Citations
```
@inproceedings{Wojke2017simple,
  title={Simple Online and Realtime Tracking with a Deep Association Metric},
  author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
  booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
  year={2017},
  pages={3645--3649},
  organization={IEEE},
  doi={10.1109/ICIP.2017.8296962}
}

@inproceedings{Wojke2018deep,
  title={Deep Cosine Metric Learning for Person Re-identification},
  author={Wojke, Nicolai and Bewley, Alex},
  booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
  year={2018},
  pages={748--756},
  organization={IEEE},
  doi={10.1109/WACV.2018.00087}
}
```